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As is now well known, the~second-order! Peano postulates may be derived in
a consistent second-order system with only one non-logical primitive expres-
sion and one non-logical axiom.1 The non-logical primitive expression, which
is intended to mean ‘the number of ’ and which I shall write as ‘N’, operates
on an open sentence with one free variable to produce a closed singular term,
so that the result of applying it to the open sentence ‘Fx’ is ‘ Nx:Fx’, or ‘ NF’
for short. The non-logical axiom says that the number ofFs is identical with
the number ofGs precisely when there is a one-to-one correspondence between
the Fs and theGs. In symbols:∀F∀G~NF 5 NG a F ' G!. George Boolos
dubbed this axiomHume’s principle, after his claim that “when two numbers
are so combin’d, as that the one has always a unite answering to every unite
of the other, we pronounce them equal”~TreatiseI.III.I para.5; cfr. Boolos 1987,
p. 6!. Boolos also used the nameFrege arithmeticto stand for the system
obtained by adjoining Hume’s principle to axiomatic second-order logic, and
the nameFrege’s theoremfor the result that ‘zero’, ‘immediately precedes’ and
‘natural number’ can be defined in the language of Frege arithmetic in such a
way that the second-order Peano postulates may be proved in that system from
those definitions. Of course, the historical Frege did not derive his versions
of the Peano postulates in the consistent system that Boolos calls Frege arith-
metic. Rather, his derivations were cast in the inconsistent system that is
obtained by adjoining to axiomatic second-order logic the notorious Basic Law
V. But because the courses-of-values regulated by Basic Law V play so nar-
rowly circumscribed a rôle in Frege’s proofs of his basic laws of arithmetic, it
is straightforward to recast those proofs as derivations in Frege arithmetic.2

So the name ‘Frege’s theorem’ is in order.
Significant as he believed Frege’s theorem to be, Boolos came not to praise

Hume’s principle but to cast doubt upon it. Crispin Wright had invoked the
theorem to vindicate the epistemological kernel of Frege’s logicism. Accord-
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ing to Wright, Hume’s principle—although not a logical truth—is still a state-
ment whose truth we can come to know through an analysis of the concept of
a cardinal number. Since, by Frege’s theorem, the Peano postulates may be
deduced from it, all the theorems of axiomatic second-order Peano arithmetic
may be known through logical deduction from a product of conceptual analy-
sis. Accordingly, “intellection of the form of temporal or spatial ‘intuition’ has
no essential part to play in the epistemology of number theory”~Wright 1983,
p. 154!, so that Frege was right, and Kant was wrong, about the epistemology
of arithmetic. Boolos had much to say against this account of the significance
of Frege’s theorem; but for present purposes only one of his criticisms inter-
ests me. If we can know Hume’s principle—whether through conceptual analy-
sis or otherwise—then it really ought to be true. And yet:

not only do we have no reason for regarding Hume’s principle as a truth of logic,
it is doubtful whether it is a truth at all. As the existence of a number, 0, belong-
ing to the conceptnot-self-identicalis a consequence of Hume’s principle, it also
follows that there is a number belonging to the conceptself-identical@i.e. Nx:x5x# ,
a number that is the number of things@sc. objects# that there are. Hume’s princi-
ple is no less dubious than any of its consequences, one of which is the claim,
uncertain at best, that there is such a number.3

In this paper, I wish to consider whether this consequence really is dubious
and, if it is, how Hume’s principle might best be emended so that it no longer
entails it.

I

Boolos gives the following reason for doubting whether there is such a thing
as the number of all objects, or, as he follows Wright in calling it,anti-zero:

On the definition of#, according to whichm # n iff ∃F∃G~m5NF ∧ n5NG ∧
there is a one-one map ofF into G!, anti-zero would be a number greater than
any other number. Now the worry is this:is there such a number as anti-zero?
According to Zermelo-Fraenkel set theory, there is no~cardinal! number that is
the number of all the sets there are. The worry is that the theory of number we
have been considering, Frege arithmetic, is incompatible with Zermelo-Fraenkel
set theory plus standard definitions, on the usual and natural readings of the non-
logical expressions of both theories~Boolos 1997, p. 260, with incidental changes
in notation!.

What, though, are the “standard definitions” that render Zermelo-Fraenkel
set theory incompatible with the existence of anti-zero? Crucial among them
is the ZF set-theorist’s conception of cardinals as a species of ordinal. He
defines the cardinal number ofFs to be the least ordinal number whose mem-
bers are equinumerous with theFs, i.e. to be the least ordinala for which
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there exists a one-to-one correlation between theFs and the members ofa.
~The members of an ordinal are precisely the ordinals less than it.! It follows
from this definition, in tandem with the axiom of replacement, that there is a
cardinal number ofFs only when there is a set ofFs.4 That axiom says that
for any seta and any functionf, the image underf of the members ofa will
constitute a set; and when there is an ordinal whose members correlate one-to-
one with theFs, theFs will be the image under the correlation of the ordi-
nal’s members, which certainly constitute a set. Boolos is quite right to say,
then, that ZF disallows a cardinal number of sets. If there were such a thing,
there would have to be a set of all sets, and hence byAussonderunga set of
non-self-membered sets; yet the reasoning of Russell’s paradox constitutes a
proof in ZF that there is not. For a similar reason, there can be no cardinal
number of ordinals. If there were, then there would have to be a set of all
ordinals, and the reasoning of Burali-Forti’s paradox constitutes a proof in ZF
that there is not. Finally, Boolos is also right to suppose that these theorems
of ZF disallow anti-zero. If there were a number of all objects, there would
have to be a set of all objects and hence, byAussonderung, a set of all sets
and a set of all ordinals, since each set and each ordinal is an object.

Powerful as this reasoning may appear, however, an adherent of Frege
arithmetic is in any case committed to rejecting its starting point. Frege arith-
metic, we may presume, is intended to make explicit Frege’s conception of
number, but that conception cannot tolerate the identification of cardinals with
ordinals. Frege held that a certain range of applications is partially constitu-
tive of each different kind of number. Cardinal numbers~including the natural
numbers! are applied in answering ‘How many?’ questions, whereas “num-
bers that give a measure”~including the reals! are applied in answering ‘How
much?’ This, indeed, is Frege’s ground for his well known denial~in the
second volume of hisGrundgesetze der Arithmetik! that a natural number can
ever be identified with a real number:

It is not possible to enlarge the realm of cardinal numbers~Anzahlen! to that of
the real numbers; they are wholly distinct domains. The cardinal numbers answer
the question ‘How many objects of a given kind are there?’, whereas the real num-
bers can be regarded as numbers giving a measure, saying how large a quantity is
as compared with a unit quantity.5

Less widely appreciated, however, is his parallel argument against identifying
cardinals with ordinals. Discussing Cantor’s notion of number inDie Grund-
lagen der Arithmetik, he remarks how

in ordinary use the words ‘cardinal number’ and the question ‘How many?’ con-
tain no reference to any fixed order. Cantor’s numbers, by contrast, answer the
question: ‘the how-manyeth member of the succession is the last member?’~Frege
1884 §85, p. 98!.
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Or, more generally and more idiomatically, they answer the question ‘Where
does this object stand in that ordering?’ Questions of this latter kind differ from
‘How many?’ questions just as basically as do questions of quantity, yet it is
they which ordinal numbers are invoked to answer. So, if Frege’s argument
provides a good reason for saying that the cardinals constitute a distinct domain
from the “numbers that give a measure”, then there is also good reason to deny
the identification of cardinals with ordinals on which Boolos’s attack on anti-
zero rests.

I shall return to the relationship between cardinals and ordinals in the next
section. But even if Frege is right about their distinctness, so that we must
reject the ZF definitions which entail the non-existence of anti-zero, there are
at least two reasons, of a rather more philosophical kind, for agreeing with
Boolos that the existence of anti-zero is at best uncertain. The first of these is
suggested by Benacerraf ’s argument in “What Numbers Could Not Be”~1965!.
There are certainly two natural numbers less than 2; and there are certainly
two von Neumann ordinals less than$B, $B%%. But if there is to be a uniquely
correct answer to the question ‘How many objects are either natural numbers
less than 2 or von Neumann ordinals less than$B, $B%%?’ there will have to
be correct answers to the four questions ‘Is the number 0 identical with the
von Neumann ordinalB?’,..., ‘Is the number 1 identical with the von Neu-
mann ordinal$B%?’ More generally, the existence of a uniquely correct answer
to the question ‘How many objects are there?’ will require the existence of a
uniquely correct answer to any question of identity that may be raised about
objects that are initially identified as belonging to different sorts. It will require,
in other words, not merely that there should be a correct answer to the ques-
tion ‘How many As that areF are there?’, for any count noun ‘A’ and any
predicate ‘F ’ that imposes a determinate restriction onAs; but also that there
should be a uniquely correct answer to any question in the form ‘Is thisA
identical with or distinct from thatB?’ For any such question must have an
answer if there is to be an answer to the question whether theB in question
has already been counted among theAs. It is, though, highly doubtful whether
there is always a correct answer to a question of identity that cuts across sorts
in this way. Benacerraf gives reasons for doubting whether there is a correct
answer to any of our four questions relating numbers and sets, and cognate
examples can be constructed for kinds of concrete object. There is an exact
number of books in my college room. There is also an exact number of mere-
ological fusions of book-boards, book-spines, and book-pages in my room. But
if there is to be a number of things in my room which are either books or
fusions of book-parts, then there will have to be answers to such questions as
whether my copy of Frege’sGrundlagenis strictly identical with the fusion
of its boards, spine and pages. But the claim that there are such answers is
highly doubtful. Accepting it involves accepting the view~powerfully attacked
by Carnap! that there will always be a “fact of the matter” whether a putative
ontological reduction succeeds.
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Curiously, Wright shows himself sympathetic to such doubts. He discusses
a case in which the brain of a man, Jones, is somehow divided and trans-
planted so as to animate a pair of decorticate human bodies,Brown andBlack,
and in which Jones’s body is then destroyed. It is then clear, he says, that two
biological organisms survive. But in order to answer the question ‘How many
objects are there, identical with either Jones,Brown or Black?’ we should
have to

say which among various organisms still surviving, to witBrown and Black, Mr
Jones now is—if, indeed, he is with us at all. It is evident that the problem is
intractable: there is not enough information in the description of the case to decide
the matter, and it is intuitively clear that one could provide as rich a description
of the case as one liked without building in any basis for decision~1983, p. 125!.

The moral Wright draws is that the notion of a sortal or countable concept
needs to be relativised. A concept is not sortal or non-sortaltout seul. Rather,
concepts

are sortal only in relation to each other. A set of concepts, we can say, are mutu-
ally sortal only if it is a determinate matter which, if any, share which of their
instances. Such a set would be, for example,$tree, person, natural number, mol-
ecule, direction%. Now: what good reason is there to think that all the concepts
which we can combine into mutually sortal groups can be combined into a single
such comprehensive group?~1983, p. 124!.

On Wright’s view there is no such reason. The set$man, natural number% is
sortal; and so is the set$biological organism, von Neumann ordinal%; but the
union set$man, biological organism, natural number, von Neumann ordinal%
is not. The example shows how an unrestricted amalgamation of sortal sets of
concepts goes beyond anything needed to sustain our ordinary practices of
counting. It is, however, needed to sustain the existence of anti-zero.6 This
casts doubt on Frege arithmetic as a formalisation of those ordinary practices.
For the formalisation incurs a dubious commitment which the practice it sys-
tematises escapes.

Some philosophers will be unimpressed by this first philosophical argu-
ment for doubting the existence of anti-zero. It turns on finding cases of inde-
terminacy of identity, and while examples such as Benacerraf ’s may well be
cases in which there is no possiblebasisfor a decision about identity, the phi-
losophers I have in mind will deny that these undecidable questions of iden-
tity lack answers. For these philosophers advance general logical grounds for
deeming indeterminacy of identity to be incoherent. Wiggins~1986!, for exam-
ple, refining the argument of Evans 1978, has attempted to prove that if things
are identical, they must be determinately identical; and Williamson~1996! has
tried to derive the corresponding result for distinctness. On their view, then,
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the absence of any conceivable basis for deciding certain questions of iden-
tity simply reflects a deep epistemic limitation. It does not provide a ground
for saying that those questions actually lack answers and accordingly does not
provide a ground for denying that there is any answer to the question ‘How
many objects are there?’

The principles on which these derivations rely are of course controversial,
but a second reason for doubting the existence of anti-zero speaks even to
those who accept them. Even if there were a determinate relation of identity0
distinctness across instances of different kinds, and even if a number were
attached to each particular kind of object~i.e. even if there were an exact
number of sets, and of numbers, and of zebras, etc.!, it still would not follow
that there is an exact number of objects. For there could fail to be such a
thing by virtue of there being no exact number ofkinds of object. In the
relevant sense, a kind of object exists precisely when there is a principle for
counting its instances, and the claim that there is a determinate collection of
such principles is highly doubtful. There is surely no determinate collection
of counting principles that people like us could learn to go by, for it is indeter-
minate how like us the relevant people must be, and also indeterminate how
much conceptual or linguistic change this ‘could’ permits. Accordingly, the
claim that thereis, nevertheless, a determinate collection of counting princi-
ples whose boundaries are settled quite independently of our ability to use
them is a strong realist claim unsupported by anything in our actual practice.

Of course, nothing in the previous four paragraphs constitutes an argument
for the actual non-existence of anti-zero, and hence for the falsity of Hume’s
principle. Like Boolos, I aim only to show that it is “uncertain at best”. But
the uncertainty is quite sufficient to motivate the project that I wish to under-
take. Namely: to see whether there is not some weaker thesis—in the same
family as Hume’s principle—which entails the Peano postulates without entail-
ing the existence of anti-zero. Were there such a thesis, and were it knowable
simply through conceptual analysis of the notion of cardinal number, a Fregean
epistemology for cardinal arithmetic would not be hostage to the existence of
anti-zero.

II

Some philosophers will readily agree that the existence of anti-zero is problem-
atical but will deny that Hume’s principle is the source of the problem. The
principle, they will observe, is committed to the existence of a number of all
objects only when its first-order variables are permitted to range over all
objects. Frege himself did permit this, of course, but the philosophers I have
in mind withhold such permission on grounds that are quite independent of
the existence of anti-zero. According to Michael Dummett, for example, “the
one lesson of the set-theoretical paradoxes which seems quite certain is that
we cannot interpret individual variables in Frege’s way, as ranging simulta-
neously over the totality of all objects which could meaningfully be referred
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to or quantified over”~1981, p. 567!. First-order variables, on this view, must
be restricted to ranging over some antecedently circumscribed domain; and once
they are so restricted Hume’s principle will not entail the existence of anti-zero.

There are certainly some ways of restricting the range of the first-order
variables in Hume’s principle which render it true under its intended interpre-
tation. If, for example, those variables are confined to ranging over the domain
$0, 1,..., n,..., :0%, then the intended reference of ‘Nx:x5x’—viz. :0—falls
within the domain, and it is easy to verify that Hume’s principle then comes
out true under its intended interpretation.~Indeed, the Burgess0Boolos proof
that Frege arithmetic is consistent relative to analysis starts from this observa-
tion.7! However, the imputation of paradox to systems whose objectual vari-
ables range unrestrictedly lacks convincing support. Richard Cartwright~1994!
has argued powerfully that the set-theoretical paradoxes arise, not from the
use of unrestricted variablesper se, but from their use in tandem with what
he calls the “All-in-One Principle”—the thesis, namely, that variables may
range over certain objects only when there is some one thing to which those
objects belong. The proper “lesson” of the paradoxes is the falsity of this
principle; once it is rejected, unrestricted quantification is permissible. What
is more, such quantification ought to be permitted on pain of rendering cer-
tain patent truths inexpressible: “Absolutely every object is self-identical”,
“Absolutely every object is mortal if human”, etc. David Lewis, indeed, notes
that paradox threatens the claim that the quantifierscannot be understood
unrestrictedly: a “mystical censor@who# stops us from quantifying over abso-
lutely everything without restriction...violates his own stricture in the very act
of proclaiming it” ~1991, p. 68!. In the light of these observations, it seems
misguided to allow Frege arithmetic to escape its problematical commitment
to anti-zero by imposing a blanket ban on unrestricted quantification. For the
problem that anti-zero presents does not seem to arise from the unrestricted
range of the theory’sobjectual variables, but rather from the assumption—
which is built into the use that Hume’s principle enjoins for the term-forming
operator ‘N’—that a cardinal number belongs to everyconcept.

If, however, we are to avoid the problematical commitment by emending
Hume’s principle in some way, can we be more specific about the feature of
the principle that is responsible for that commitment? How can the principle
be dissected into logically distinguishable parts? An important first incision has
been made by Dummett. He abhors the term ‘Hume’s principle’ because it

blurs a vital distinction between two quite distinct principles:
~1! the definition of ‘just as many...as’~of ‘equinumerous’!:

There are just as manyFs asGs iff there is a one-one map of theFs on to
the Gs

and
~2! the equivalence~EN!—the abstraction principle proper:

The number ofFs 5 the number ofGs iff there are just as manyFs asGs
~Dummett 1998, p. 386!.
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Certainly, if we are to continue to use the term, we must bear in mind that
Hume’s principle is the conjunction of these quite different theses. It is one
thing to advance a definition~or a conceptual analysis! of the notion of there
being exactly as many as. It is another to move from the premiss that there
are exactly as manyFs asGs to the conclusion that there is an object, the
number ofFs, with which the number ofGs is identical.8

Neil Tennant, the writer who has had most to say about the problem we
are addressing, diagnoses it as stemming from Dummett’s principle~2!. The
one non-logical primitive in the language of Frege arithmetic, he reminds us,
is the singular term-forming operator ‘N’; and because the language contains
semantically complex terms, we cannot assume

that all singular terms denote just by virtue of being grammatically well-formed.
Instead, we have to take seriously the possibility of ‘empty’, or non-denoting sin-
gular terms, even when they are grammatically well-formed. What we need, in
short, is afree logic ~Tennant 1997, p. 311!

—i.e., a logic in which claims in the form<t exists> may be false for some
singular termst.9 And while the left-to-right half of principle~2!—which Ten-
nant labels~N1!—is correct as it stands, he argues that the conditional from
right to left is not:

~N2! The number ofFs is identical to the number ofGs if there are exactly as
manyFs asGs

...is not analytically true as it stands.F and G might have such vast extensions
that, although they might be in one-to-one correspondence, they nevertheless enjoy
no number as their cardinality. The analytically true claim is rather
~N2*! The number ofFs is identical to the number ofGs if ~there are exactly as

manyFs asGs and the number ofFs exists and0or the number ofGs exists!
~Tennant 1997, p. 313!.

Even when supplemented by Frege’s definition of ‘exactly as many as’, the
conjunction of~N1! and ~N2*!—a conjunction I shall label~2*!—does not
yield the Peano postulates. Further principles asserting or entailing the exis-
tence of numbers are needed. Tennant shows, however, that the postulates may
be derived when principles~1! and ~2*! are combined with the following two
existence principles:

~A! if there are noFs, then the number ofFs exists;
~B! if the number ofFs exists and there is exactly one moreG than there

areFs, then the number ofGs also exists.10

~‘There is exactly one moreG than there areFs’ is defined to mean: ‘There
is an objectx which is aG and for which theFs are equinumerous with the
Gs distinct fromx’.! Principle ~A! entails the existence of zero; and principle
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~B!, which Tennant dubs theratchet principle, may then be applied repeat-
edly to establish the existence of each positive natural number. Those princi-
ples, however, do not entail the existence of anti-zero. When combined with
the suggested existence principles, then, principles~1! and~2*! appear to offer
the benefits of Hume’s principle without the uncertainties.

If those benefits are to include a vindication of Frege’s epistemology for
elementary arithmetic, however, then the existence principles needed to derive
the Peano postulates must themselves be knowable without any appeal to “intu-
ition”. But are they? Tennant himself supposes that they are. He describes his
existence principles as “coreconceptualtruths about natural numbers”~1997
p. 319, with emphasis added!, and he attempts to justify the claim that the
ratchet principle is analytic by explaining that it

is really toothless ontologically. All it expresses is the thought that if one has gone
so far as to acknowledge the existence of any one natural number, then there is
no reason to refuse to recognise the ‘next’ number. That seems reasonable: not
even the nominalist opponent wishes to visit on the Platonist a prematurely trun-
cated initial segment of the natural number series, denying the Platonist all~and
only! the numbers after some allegedly ‘final’ one~1997, p. 319!.

I do not see, however, that this establishes that the ratchet principle is ana-
lytic in the epistemologically relevant sense of being knowable by logical
deduction from the deliverances of conceptual analysis. It may well be hard
to find anybody who denies it; hard even to find somebody who denies that it
is “reasonable” to accept it. The question, however, is whether there are rea-
sons for accepting it that make no appeal~however surreptitiously! to any deliv-
erances of “intuition”.

It seems, moreover, that there is only one way to establish an affirmative
answer to this question on a really secure basis. Namely: by formulating a
numerical existence principle that may be shown to follow from a conceptual
analysis of the notion of cardinal number; and then by giving a strictly logi-
cal deduction of the ratchet principle from this principle. And it is clear on
reflection that an existence principle logically grounded in a conceptual analy-
sis will be needed inany vindication of Frege’s epistemology for elementary
arithmetic in the context of a free logic. His major claim in this area is that
elementary arithmetical theorems may be proved “from general logical laws
and from definitions”~Frege 1884 §3, p. 4!. Vindicating this claim will involve
giving a strictly logical derivation of the Peano postulates from axioms that
are “definitions” in the sense of being knowable through an analysis of the
notion of number and through that alone. When the derivation is to take place
in a free logic, these general laws will have to include a principle of numeri-
cal existence. So, vindicating Frege’s epistemology requires finding an exis-
tence principle which~i! may be known through conceptual analysis; and which
~ii ! combines with principles that may be known on similar grounds—such as
~1! and~2*!11—to entail the Peano postulates. Tennant’s work shows that con-
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dition ~ii ! will be met if we can find an existence principle which entails both
principle ~B! and the existence of zero. But there may of course be other ways
of meeting it.

What might a suitably general existence principle be? What is it for there
to be such a thing as the cardinal number ofFs? The connection that Frege
posits between cardinals and ‘How many?’ questions suggests the following
first shot at an answer: there is such a thing as the number ofFs if and only
if the question ‘How manyFs are there?’ has a uniquely correct exact answer.
That is what it is for there to be a unique number ofFs; for cardinal numbers
are nothing other than things invoked to keep the tally as we give exact answers
to various ‘How many?’ questions.12

This account of numerical existence may appear to undo the use we are
making of a free logic by ensuring that the number ofFs exists for anyF.
For let us assume the truth of Dummett’s principle~1!—namely, that there are
exactly as manyFs asGs iff there is a one-one map of theFs on to theGs.
Formally, a relationR maps theFs one-one on to theGs iff

∀x@Fx r ∃y~Gy ∧ Rxy!# ∧ ∀y@Gy r ∃x~Fx ∧ Rxy!# ∧
∀x∀u∀y∀v @Rxy∧ Ruv r ~x5u a y5v!#.

Now it is a theorem of first-order logic that identity maps theFs one-one on
to themselves, so there will always exist a one-one map of theFs on to the
Fs. If principle ~1! is correct, then, there will always be exactly as manyFs
as there areFs. And this might seem to entail that there will always be a cor-
rect exact answer to the question ‘How manyFs are there?’ Namely: pre-
cisely as many as there areFs.

Does such a response really qualify, though, as an exact answer to the ques-
tion? A passage inGrundlagenitself suggests a strong reason for supposing
that it does not. “The numbers”, Frege writes in §10, “are related to one another
quite differently from the way in which the individual specimens of, as it might
be, a species of animal are, for it is in their nature to be arranged in a definite
order of precedence”~Frege 1884, p. 15!. The context leaves it somewhat
unclear whether Frege meant to propound this doctrine for cardinal numbers
in general or simply for finite numbers. Whatever his intentions were, how-
ever, it is plausible to demand of any satisfactorily exact answer to a ‘How
many?’ question that itshouldindicate exactly how it relates to other possible
answers. This is a task which one who responds to the question ‘How many
Fs are there?’ by saying ‘Exactly as many as there areFs’ signally fails to
accomplish. This observation in turn enables us to identify more accurately
the feature of Frege’s theory of number that is responsible for its commitment
to the existence of anti-zero. The problem is not merely the use of a logic that
presupposes a reference for each well-formed singular term. For, as we have
seen, even when that presupposition is cancelled by deploying a free logic,
Hume’s principle entails that for any conceptF, the number ofFs is identical
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with the number ofFs and hence—even on standard free-logical assumptions—
that the number ofFs exists. The deeper problem is that the criterion of numer-
ical identity—and hence of numerical existence—encapsulated in Hume’s
principle fails to respect the point that it is in the nature of cardinal numbers
~and not just of finite cardinals! to be arranged in a definite order.

What, though, are the essential features of that order? It is natural to try
to answer this question by formulating conditions on the relationR that relates
a member of a sequence of number-words~i.e. a sequence of objects suited
to provide exact answers to ‘How many?’ questions! to its immediate succes-
sor. In the first place, such a sequence must include a member with no pre-
decessor, for a count has to begin somewhere. That is to say, we must have:
~i! ∃x ¬∃y Ryx. It is also clear that theR-relation should beeindeutig, or
functional, for there cannot be more than one right way to continue a count.
In symbols:~ii ! ∀x∀y∀z @Rxy∧ Rxzr y5z# .13 To be sure, one can imagine
an Anglo-French bilingual counting three objects by saying ‘one’, ‘deux’,
‘three’, or ‘one’, ‘two’, ‘trois’, as he pleases. But we can only accept this as a
sensible way to count if we understand the tokens of ‘deux’ or ‘two’~for
example! as equally admissible instantiations of a hybrid numerical word-
type ‘deux’0’two’. On this conception of the matter, theR-relation that binds
the bilingual’s numbers-wordswill still be functional; what is unusual about
the case is only that a single word-type may be pronounced in two very
different ways. Unusual as this may be, it seems to me to be no more un-
toward than the fact that a given number-word type may be instantiated in
different accents, or at different volumes.

A third condition onR is indicated by a passage inGrundgesetze. Theo-
rem 145 of that work states that no finite cardinal number follows after itself
in the number-series~Frege 1893 §113, p. 144!. That is to say: no finite cardi-
nal is related to itself by thestrong ancestralof the relation that relates each
cardinal to its immediate successor.14 And in advertising the significance of
this result Frege writes as follows:

The importance of this proposition becomes clearer through the following consid-
erations. If we determine the number belonging to a conceptF~j!—or, as one
ordinarily says, if we count the objects falling under the conceptF~j!—then we
successively co-ordinate these objects with the number-words from ‘one’ up to a
number-word ‘N’. This number-word is determined through the co-ordinating rela-
tion’s mapping the conceptF~j! into the concept “member of the series of number-
words from ‘one’ to ‘N’ ‘’ and the converse relation’s mapping the latter concept
into the former. ‘N’ then designates the number sought; i.e.N is this number. This
process of counting may be carried out in various ways, since the co-ordinating
relation is not fully determined. The question then arises, whether one could reach
another number-word ‘M’ through another choice of this relation. In that case, it
would follow from our results thatM would be the same number asN, and yet at
the same time that one of these two number-words would follow after the other,
e.g. ‘N’ after ‘M’. In that case,@the number# N would also follow@the number# M
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in the number-series, i.e.N would follow itself. Our theorem excludes that possi-
bility for finite cardinals.15

It will help to spell out Frege’s reasoning in this passage more fully. He
begins by observing that the condition for the number word ‘N’ to say cor-
rectly how manyFs there are is that there should be a one-one correlation
between theFs and the number-words that appear no later than ‘N’ in the
relevant sequence of number-words.~This condition presupposes that number-
words are ordered.! As he observes, however, a plethora of relations may
establish such a correlation. The number-word ‘nine’~in the sequence ‘one’,
‘two’, ...! correctly answers the question ‘How many symphonies did Beethoven
compose?’ because the relationp that maps Beethoven’snth symphony~in
the order of their composition! to the number-word ‘n’ effects a one-one cor-
relation between his symphonies and the number-words from ‘one’ to ‘nine’
inclusive. But there is a distinct correlationr that maps Beethoven’snth most
frequently performed symphony to the number-word ‘n’, and “the question
arises whether we can reach another number-word@‘eight’, as it might be#
through” this new correlation. If we could, then the sequence of number-
words would provide two distinct answers to the question ‘How many sympho-
nies did Beethoven compose?’ The answer ‘nine’ would be correct by virtue
of correlationp; yet the answer ‘eight’ would also be correct by virtue of
correlationr. In such a case, then, there would be no determinate answer—
i.e. no unique exact answer—to the question ‘How many symphonies did
Beethoven compose?’

Now the passage identifies a feature of the relationR between a number-
word and its immediate successor that excludes this possibility and thereby
ensures that number-words ordered by such anR provide suitably determinate
answers to ‘How many?’ questions. For what Frege’s reasoning brings out is
that the expressions related byR will not provide suitable answers to ‘How
many?’ questions unlessR’s strong ancestralR* is irreflexive. We must, in other
words, have:~iii ! ¬∃x R*xx. For let us suppose that a speaker replies to the
question ‘How manyFs are there?’ by saying ‘N’. As Frege notes, in giving
this answer, he is affirming the existence of a one-one map from theFs on to
the number-words from ‘one’ up to and including ‘N’. Now if the number-
word ‘N’ were related byR* to itself, then ‘N’ would stand~let us say! in
both thenth and themth places of theR-series. In that case, there would be
no telling whether our speaker was deeming theFs to be equinumerous with
the number-words occupying the first to thenth places of that series or with
the number-words occupying the first to themth places. Accordingly, the reply
‘N’ could not, after all, constitute an unambiguous answer to a ‘How many?’
question. In general, then, a series of expressions whose ancestral is not irreflex-
ive will fail to supply suitably unambiguous answers to such questions.

As Frege notes, Theorem 145 ofGrundgesetzeexcludes that possibility for
finite cardinals, but the reasons just given for requiring the relation between a
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number-word and its successor to meet the three conditions listed are wholly
general. Ifany sequence of number-words, whether finite or infinite, is to sup-
ply determinate answers to ‘How many?’ questions, the relation that binds suc-
cessive members must have a beginning, must be functional, and must have
an irreflexive strong ancestral. It is, moreover, highly plausible that these con-
ditions suffice for the members of a sequence to be usable in giving determi-
nate answers to ‘How many?’ questions. In the first place, it is obviously
inessential that the objects that are so used should be things that we ordi-
narily take to be number-words, or even that they should be things that we
ordinarily take to be expressions at all. Demonstrating theNth object in a
sequence of ordinary material objects that meets conditions~i! to ~iii ! may con-
stitute a perfectly good way of answering ‘N’ to a ‘How many?’ question, albeit
one whose actual employment will often be impractical. The three conditions
are, moreover, so strong logically that it seems implausible to require any more
of expressions that may be used to record the results of counts. For if some
expressions are related by a relationR that meets the conditions, then they will
be well ordered byR’s strong ancestral.16

What condition for numerical existence, however, might be derived from
these considerations about relations whose relata may be used for counting? A
very simple answer runs as follows. Let us say that a conceptF is a simple
tally when the objects falling under it are the logical posterity of some object
under a relation that meets the three Fregean conditions~i! to ~iii !. Symbolically:

S-tally~F! a ∃R~ ∃x ¬∃y Ryx∧ ∀x∀y∀z @Rxy∧ Rxzr y5z# ∧
¬∃x R*xx ∧ ∃x∀y@Fy a R*5xy# !.

Now to establish an exact answer to the question ‘How manyFs are there?’
is, as Frege says, to establish a one-one correlation between theFs and some
objects that may be used in counting. And if we suppose that objects usable
in counting will be the logical posterity of some object under a relation that
meets Frege’s conditions, the passage yields the following suggestion. There
will be a determinate answer to the question ‘How manyFs are there?’ if and
only if the conceptF is equinumerous with an initial segment of a simple tally.

In fact, this suggestion will not do. One problem with it may be dealt with
quite simply. In the quoted passage, Frege writes as though ‘determining the
number belonging to a conceptF ’ were synonymous with ‘counting theFs’.
In other writings, however, he gives a compelling reason for supposing that it
is not. One can count theFs—in the sense of establishing a one-one correla-
tion between theFs and the number-words between ‘one’ and ‘N’ inclusive—
only if there is at least oneF to be counted. And yet “in answering ‘zero’ to
the question ‘What is the number of Romulus’ predecessors on the throne of
Rome?’...we are not denying that there is such a number, we are naming it”
~Frege 1894, p. 328!. Paradoxes result if one construes the answer ‘nobody’
to the question ‘Who preceded Romulus on the throne of Rome?’ as the name
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of a king of Rome. In givingthat answer, one is denying that there is any
such predecessor to be named. The expression ‘zero’, by contrast, “may be
used just like all other number words without special precautions”~ibid.!. So,
even though zero is not among what Frege calls the “counting numbers”, the
word ‘zero’ does express a possible determination of number. That is to say,
it is a possible answer to a ‘How many?’ question rather than a repudiation of
that question. The suggested condition for such a question to have an exact
answer must, then, be emended at least this much: it will possess one if and
only if F is either empty or equinumerous with an initial segment of a simple
tally.

Another problem with the suggestion cuts much deeper. An object’s logical
posterity under a functional relation will not have a cardinality greater than
:0, so that this is the greatest cardinality of a simple tally. No doubt this helps
to explain why mathematicians call concepts of cardinality no greater than:0

“countable”. Since Cantor, however, they have become accustomed to the idea
that there are many greater answers to ‘How many?’ questions which are yet
perfectly exact. The philosophical theory of number we are considering contra-
dicts that idea; and few mathematicians will take seriously an account of num-
ber that bars so firmly the gates to Cantor’s paradise.

Serious as this difficulty is, I think it may be overcome by a change of focus.
In the passage quoted fromGrundgesetzeI §108, the analysis focuses upon
the conditions that must be met by the relation between one number-word and
its immediatesuccessor, if a whole sequence of number-words is to provide
exact answers to ‘How many?’ questions. A simple tally was then defined as
a concept whose extension comprises objects related to some initial element
by such a relation’s weak ancestral. But our earlier reflections upon the activ-
ity of counting also yield constraints on the relation of one answer’sbeing later
than another~in the relevant ordering of answers! that run parallel to those
that constrain the relation of immediately succeeding. And by spelling out the
former constraints we can define a more general notion of a tally without invok-
ing ancestrals. In particular, those reflections support the hypothesis that if an
ordering of number-words is suited to supply exact answers to ‘How many?’
questions, then the relationS of being later than~in the ordering! must be a
strict well-ordering. The requirement thatS should be a linear ordering~i.e.
should be transitive and connected! simply generalises the requirement~in the
countable case! that a given set of number-words should constitute a sequence.
Furthermore, the argument distilled from the passage quoted fromGrundgesetze
shows thatS must be irreflexive: if a single number-word ‘N’ occurred at both
the mth and thenth places, then we would be uncertain how far a count had
proceeded before it issued in the answer ‘N’. Finally, it is hard to see how a
count could proceed in an orderly way unless every non-empty class of number-
words had a least member underS. For a thinker starts a count by associating
an object with theS-least number-word~‘one’, as it might be!; and he contin-
ues by associating a distinct object with theS-least number-word that is dis-
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tinct from ‘one’ ~for example, ‘two’!. If the objects are suited to providing
exact answers to ‘How many?’ questions, there must be a uniquely correct asso-
ciation to make at each stage; and this requires that each non-empty class of
number-words shall have a least member under the relationS.

This suggests the following way of elaborating the idea that there is a non-
zero number ofFs just when theFs can be counted—a way which allows for
cardinal numbers greater than:0. Let us say that a conceptG is a generalised
tally iff the objects that fall under it may be strictly well-ordered. Symbolically:

Generalised tally~G! a ∃R ~R is a strict well-ordering onG!

whereR is a strict well-ordering onG iff

∀x∀y∀z @Gx ∧ Gy ∧ Gzr ~~Rxy∧ Ryzr Rxz! ∧ ~Rxy∨ x5y ∨ Ryx! ∧
¬ Rxx∧ ∀H @~ ∀w~Hw r Gw! ∧ ∃wHw! r

∃u∀v~Hvr Ruv ∨ u5v!# !#

The analysis above suggests that the objects falling under a conceptG will
constitute a range of possible answers to a ‘How many?’ question just in case
G is a generalised tally. And this gives us the needed condition for the ques-
tion ‘How many Fs are there?’ to possess an exact non-zero answer. For we
shall give such an answer by indicating a particular strict well-orderingR on
the Gs, by singling out somehow an objectx that falls underG, and by saying
that theFs are equinumerous with theGs up to and includingx under the rela-
tion R. This gives the following necessary and sufficient condition for there
to be such a thing as the number ofFs:

~C! There is such a thing as the number ofFs iff either F is empty or
∃G ∃R ∃x ~R is a strict well-ordering onG ∧ F ' GFR x!

where ∀y @~GFR x!y a ~Gy ∧ ~Ryx∨ y5x!!#. We may express this in words
by saying:

~C! There is such a thing as the number ofFs iff F is either empty or
equinumerous with a bounded initial segment of some generalised
tally.

The requirement that a conceptF to which a number belongs should be equi-
numerous with aboundedsegment of a tally reflects the fact that in giving an
exact non-zero answerx to a ‘How many?’ question a respondent indicates
that all theFs may be put in correspondence with the members of the tally up
and includingx. Even if the count could not be completed in a finite time, the
count must in this sense be exhaustive.

Hume’s Principle and the Number of all Objects529



Proposal~C! rests squarely on the Fregean idea that the existence condi-
tions of cardinal numbers relate directly to their application in answering ‘How
many?’ questions. But in uncovering an order-related element in the notion of
an answer to such a question, it gives us the desired room to deny that a num-
ber attaches to each and every concept. Certainly, the mere fact that theFs
may always be correlated one-one with themselves no longer suffices to estab-
lish the claim that there will invariably be a number ofFs. For the fact in
question does not entail that theFs are equinumerous with a bounded initial
segment of some generalised tally.

To discern an order-related element in the notion of an answer to a ‘How
many?’ question is not to identify cardinal numbers with ordinals, as Cantor
did and as ZF set-theorists still do. On the contrary; on a view such as Frege’s—
whereby kinds of number are constituted by their ranges of application—the
basic differences between ‘How many?’ and ‘How manyeth?’ questions pre-
clude any identification of the numbers that are invoked in answering them.17

It is, rather, to challenge the idea—which is encapsulated in Hume’s principle—
that the conditions for the identity of numbers~and hence of their existence!
may be explained purely in terms of one-one correspondence. Since theFs are
always in one-one correspondence with themselves, it is this idea which~as we
saw! ultimately underpins the ascription of a number to eachbona fidecon-
cept. In challenging this idea, I am not denying the consistency of the result-
ing theory of number~i.e. Frege arithmetic, in a free logic!, nor its attractiveness
as a theoretical simplification of our ordinary arithmetical practice. The fact that
it entails the existence of anti-zero, however, shows that the theory’s simplic-
ity is bought at the cost of commitments which participation in that practice
does not incur. Moreover, the alternative arithmetical theory comprising princi-
ples~1!, ~2*! and~C!—however unfamiliar it may be—arises just as naturally
as Frege arithmetic when we try to regiment our ordinary arithmetical prac-
tice. Any such regimentation will be a theoretical projection from the judge-
ments that ordinary thinkers make about the finite cardinals, and from the rules
of inference that they apply to those judgements. Once the concept of being
well ordered is explained to them, such thinkers will take it for granted that
the finite cardinals compose a well ordered series. In taking equinumerosity with
an initial segment of a well ordered series to be the general criterion for numer-
ical existence, then, principle~C! embodies a theory of cardinal number that is
just as natural a projection from our ordinary arithmetical practice as is Hume’s
principle.

Our discussion also casts some light on Frege’s relations with another of
his eminent contemporaries. I have been taking more or less for granted the
truth of Dummett’s principle~1!—that there are exactly as manyFs asGs iff
there is a one-one map from theFs on to theGs. It ought to be observed,
however, that there is now a ground for doubting this. As we have seen, there
is always a one-one map from theFs on to theFs, so if principle~1! were
correct it ought always to be true to say ‘There are exactly as manyFs as
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there areFs’. One might, however, reasonably doubt whether thisis always true.
For it is far from silly, or even eccentric, to insist that no statement in the form
‘There are exactly as manyFs asGs’ can be true unless there are exactly
so many Fs, i.e. unless the question ‘How manyFs are there?’ has an exact
answer. If so, then principle~1! needs an extra clause on its right-hand side:
there are exactly as manyFs asGs iff there is a one-to-one correlation between
the Fs and theGs and there exists a number ofFs and0or a number ofGs.

This last observation is of no systematic importance. The proofs of theo-
rems drawing consequences from the existence of a one-one map from theFs
on to theGs go through whether or not this suffices for the truth of the vernac-
ular claim ‘There are exactly as manyFs asGs’. ~Indeed, we may in any event
continue to use Frege’s invented word for concepts related by such a mapping—
gleichzahlig—along with the corresponding English invention, ‘equinumer-
ous’.! And while anything deserving the name ‘theory of number’ must surely
deliver sometheorems to the effect that there are exactly as manyFs asGs,
this condition will be met just as well by a theory that incorporates the pro-
posed emendation of principle~1! as by one that incorporates its original, so
long as it also incorporates some account of when the number ofFs exists.
~Such an account is, of course, just what principle~C! provides.! The observa-
tion does, though, provide the grounds for anamende honorableto the shade
of Husserl. He was sceptical of principle~1!—at least as an analysis of the
notion of ‘exactly as many’ or of ‘sameness of number’—and proposed an alter-
native: “the simplest criterion of equality of number~Gleichheit der Zahl! is
just that thesamenumber results in counting the sets to be compared”~Hus-
serl 1891, p. 115!. In reply, Frege accused him of forgetting

that this counting itself rests on a one-to-one correlation, namely of the numerals
from 1 to n and the objects of the set. Each of the two sets needs to be counted.
This makes the matter less simple than it is if we consider a relation that corre-
lates the objects of the two sets without numerals as intermediaries~Frege 1894,
p. 319!.

This riposte has been thought to be devastating. But if not every one-to-one
correlation betweenFs andGs validates ‘There are exactly as manyFs asGs’,
then the apparently otiose detour through the numerals does establish some-
thing crucial to the truth of this claim. Namely: that the conceptF ~and0or
the conceptG! is equinumerous with a bounded segment of some tally.

III

The arithmetical theoryQ that results from combining principles~1! and ~2*!
with the proposed numerical existence principle~C! does not entail that every
concept has a number. Each conceptF is equinumerous with itself, but in theory
Q that fact entails that there is a number ofFs only given the further premiss
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that theFs constitute a bounded segment of some generalised tally.Q does
not entail that every concept has this attribute, and neither does the result of
adjoining to it the axiom of choice.~The axiom entails that every set may be
well ordered, but there are many concepts whose extensions do not constitute
sets.! More particularly,Q also does not entail that the conceptself-identical
has this attribute, so it escapes commitment to the existence of anti-zero.
Indeed, given the additional assumption that each ordinal number is an object,
Q entails that there is no such number as anti-zero. On that assumption, if there
were such a thing as the number of all objects, then there would have to be
such a thing as the number of all ordinal numbers. That, however, theoryQ
excludes. The conceptordinal numberis itself a generalised tally, but it can-
not be equinumerous with any bounded segment of such a tally. For no bound
can be placed on the ordinals themselves.

In avoiding commitment to anti-zero,Q resembles Tennant’s theory of num-
ber. But there are important differences between its existence principle~C! and
Tennant’s ratchet principle. The ratchet principle gives only a sufficient condi-
tion for certain cardinal numbers to exist. Principle~C!, by contrast, gives a
quite general necessary and sufficient condition for there to be such a thing
as the number ofFs—a condition grounded in a conceptual analysis of the
notion of a cardinal number~and, more particularly, of the connections between
that notion and our practices of counting!. If principles ~1! and ~2*! may be
grounded similarly, then, the first of our conditions for vindicating Frege’s epis-
temology of arithmetic is satisfied.

Does theoryQ, though, entail the Peano postulates? One strategy for show-
ing that it does would be to fill out the derivation that Frege himself sketched
in §§70–83 ofGrundlagen, interpolating proofs that the concepts there used
to define the positive natural numbers really are bounded segments of general-
ised tallies. Following Frege~1884 §74, p. 88!, we may begin with the logical
truth that the conceptnot self-identicalis empty. By~C!, this shows immedi-
ately that the number of non-self-identical objects exists, so that if we define
‘0’ to stand for this number, we shall have deduced from~C! that 0 exists. Fur-
thermore, whereG is now the conceptidentical with 0, the empty relationR0,
restricted to 0, will be a strict well-ordering onG andG will be co-extensive
with GFR0

0. Accordingly, this conceptG is co-extensive with, and hence
equinumerous with, a bounded segment of a generalised tally. By principle~C!
again, this shows that there is such a thing as the number attaching to this con-
cept, so that if—like Frege~1884 §77, p. 90!—we define ‘1’ to stand for this
number, we shall have deduced from~C! that 1 exists. Frege’s own reasoning
then shows that 1 is the number of all uniquely instantiated concepts~cfr. 1884
§78, p. 91!, and also that it immediately follows 0 in the “natural sequence
of numbers”~die natürliche Zahlenreihe; cfr. 1884 §77, p. 90!. This relation,
restricted to 0 and 1, is itself a well-ordering of the conceptidentical with either
0 or 1, so that this last concept too is a bounded segment of a generalised tally.
This establishes the existence of 2; and so on up.
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This argument could be worked up into a proof of the Peano postulates in
Q. We may, however, build on Tennant’s work to establish an affirmative
answer to our question more quickly. As I remarked above, he gives a free-
logical derivation of the Peano postulates from principles~1! and~2*! together
with the existence principles:

~A! if there are noFs, then the number ofFs exists;

and

~B! if the number ofFs exists, and there is exactly one moreG than there
areFs, then the number ofGs also exists.

An analysis of his derivation shows, however, that it does not require the full
power of the ratchet principle,~B!. As readers of Frege will have expected,
its one application in the proof comes in establishing what we might call the
succession principle: that if a natural number exists then so does its succes-
sor. Now it may be shown~without appeal to the ratchet principle! that the
natural numbern—if it exists at all—is nothing other than the number of nat-
ural numbers less thann. It is also a logical truth that there is one more num-
ber less than or identical withn than there are numbers less thann. Accordingly,
the succession principle may be derived from~B! by substituting ‘natural num-
ber less thann’ for ‘ F ’, and ‘natural number less thann or identical with it’
for ‘G’. There is, however, something rather particular about the concepts
involved in this use of the ratchet principle. Let us say that a concept isDede-
kind infinite if it is equinumerous with one of its proper sub-concepts; and let
us say that it isDedekind finiteotherwise. Then the conceptF to which the
ratchet principle is applied is not only Dedekind finite, but may be shown to
be so on purely conceptual grounds. For if the concept ‘natural number less
thann’ were Dedekind infinite, it would be equinumerous with ‘natural num-
ber less thanm’, for some numberm strictly less thann. And this would mean
that n ~which is the number of numbers less thann! would be identical with
m ~which is the number of numbers less thanm!, so that we should haven
strictly less thann, and the successor ofn less than or equal ton. Without
invoking ~B!, however, Tennant shows~1987, p. 287! that this would contra-
dict the Peano postulate that numbers with identical successors are them-
selves identical—a postulate that he proves without appealing to the ratchet
principle ~op.cit., p. 295!. Tennant’s derivation of the Peano postulates, then,
needs only the following weaker form of the ratchet principle:

~B* ! if the number ofFs exists, whereF is a Dedekind finite concept,
and there is one moreG than there areFs, then the number ofGs
also exists.
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So in order to show that the Peano postulates are theorems ofQ, it suffices to
derive~A! and~B* ! from ~C!.

The derivation of~A! is, as I have already remarked, immediate. But what
of ~B* !? Can we show that if the number ofFs exists, andF is Dedekind
finite, and there is one moreG than there areFs, then the number ofGs also
exists? Let us suppose that the three conjuncts in the antecedent of~B* ! hold
good. By principle~C! and the first conjunct, we know thatF is equinumer-
ous with a bounded segment of some generalised tally. Let us call the mem-
bers of this segment theTs, so that there is a one-one mapw from theTs onto
the Fs. Since there is exactly one moreG than there areFs, we also know
that there exists an objectx which is aG and for whichF ' G \ $x% . ~Here,
‘G \ $x% ’ indicates the concepta G distinct from object x.! Let us label one
such object ‘a’. Then we have:~i! a is G; and ~ii ! F ' G \ $a% , so that there
exists a one-one mapc from the Fs onto theGs distinct froma. There are
then two cases to consider. First~I !, that in which eachG is a T; second~II !,
that in which someG is not aT.

We show that case~I ! contradicts the hypothesis thatF is Dedekind finite.
If each G is a T, then a is a T, so there will be a uniqueF, which we shall
call b, to which objecta relates underw. We show thatF is Dedekind infinite
by showing that there is a one-one map fromF into F \ $b% . Let us define the
product relation

xxy a ∃z ~cxz ∧ wzy!.

Thenx is such a map. Sincec maps theFs into theGs, and since everyG is
a T, c maps theFs into theTs; sincew maps theTs into theFs, x maps the
Fs into theFs. For noc, however, do we havexcb. If we did, then∃z ~ccz ∧
wzb!, and since∀z ~wzb r z 5 a!, we should havecca, contradicting the
claim thatc is into G \ $a% . That is to say:x maps theFs into theFs other
thanb. Moreover, the mapx is one-one because ifxxy andxxw then we can
find objectsu and v for which cxu ∧ wuy and cxv ∧ wvw. Sincec is one-
one,u 5 v, and sincew is one-one,y 5 w. The Fs, then, will be equinumer-
ous with their images underx, and these images will be a proper sub-concept
of F, sinceb will not be among them. SoF is Dedekind infinite.

Given the hypothesis thatF is Dedekind finite we may, then, confine our
attention to case~II !, and suppose that there exists aG which is not aT. This
time letb be such aG. We show how to construct a bounded segment of a gen-
eralised tally with whichG is equinumerous. We know that there is a one-one
mapw from T onto F, and that there is a one-one mapc from F onto G \ $a% ,
so that the product mapx is one-one fromT onto G \ $a% . We consider the
relationx1 which is just likex save that in additionx1ba. Sinceb is not a
T, thex1 relation is a one-one map fromT1$b% on to G, whereT1$b% is the
conceptis either a T or is identical with b. That is to say:G ' T1$b% . What is
more,T1$b% is a bounded segment of a generalised tally. We are given thatT
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has this attribute, so that theTs may be well ordered by a relationR which pro-
vides an upper bound for them. We extendR to an orderR1 on T1$b% by add-
ing b “at the front”, i.e. by picking ad which is least inR and definingR1 to
be just likeR save that in additionR1bd. R1 inherits its transitivity and con-
nectedness fromR. Moreover, sinceb is not aT, the fact thatR is irreflexive
on T entails thatR1 is irreflexive onT1$b% . Furthermore, any non-empty sub-
conceptY of T1$b% will have anR1-least object falling under it.~If b falls
underY, this object will beb itself. If not, thenY will be a non-empty sub-
concept ofT, and theR1-least object inY will be the R-least object, which is
guaranteed to exist sinceT is well ordered byR.! Finally, the upper bound that
R provides forT also serves as anR1-upper bound forT1$b% ; for R1 differs
from R only at the front. This completes the proof thatT1$b% is a bounded
segment of a generalised tally, and sinceG is equinumerous with it,~C! entails
that there exists such a thing as the number ofGs. And this in turn completes
the derivation of principle~B* ! from principle~C!.

The derivation shows the significance of the difference between principles
~B! and ~B* !. The problem is not that principle~B!—the strong version of
the ratchet principle—is false in case~I !. On the contrary; if eachG is a T,
then there will be a one-one map from theGs into theFs—namely, the restric-
tion of w to Gs. Since there is also a one-one map from theFs into theGs—viz.
c—the Schröder-Bernstein theorem shows thatFs andGs are equinumerous,
so that if the number ofFs exists then so certainly does the number ofGs.
But while there is no serious doubt about the truth of the Schröder-Bernstein
theorem, its proof uses a definition by recursion, and nobody concerned to vin-
dicate Frege’s epistemology of arithmetic can appeal to it in deriving the Peano
postulates. For the question would then arise, whether the legitimacy of defini-
tion by recursion rests upon some “intuitive”, or at least non-conceptual, ele-
ment. Whatever the answer to that question, however, the derivation just given
of ~B* ! from ~C! may be formalised as a strictly logical proof.

In drawing attention to this difference, I do not mean to exclude the possi-
bility that conceptual analysis of the notion of cardinal number might estab-
lish the strong ratchet principle~B!, or that it might show more directly the
analyticity of the weak ratchet principle~B* !. ~Indeed, I cannot consistently
exclude the second possibility; for~B* ! is a logical consequence of a thesis
that I claim to be knowable through conceptual analysis, viz.~C!.! All the
same, even if one or both of these possibilities were to be realised, the exis-
tence principle~C! would retain its interest. Even in its strong form as~B!
rather than~B* !, the ratchet principle tells us nothing about the existence of
any infinite cardinals. Principle~C!, by contrast, tells us quite generally that
the number ofFs exists whenever theFs are equinumerous with a bounded
segment of some generalised tally. The principle may be applied, then, to
establish the existence of transfinite cardinals. Applying the principle to estab-
lish the existence of an infinite number ofFs will, though, involve finding a
well-orderable conceptG with which theFs may be shown to be equinumer-
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ous, and in general it will not be possible to show on purely logico-conceptual
grounds that such aG exists. In one special case, however, this would appear
to be possible. The Peano postulates themselves entail that the natural num-
bers are strictly well ordered by the relation,. Let us suppose, then, that we
can establish on a logic-conceptual basis the existence of an objecta that is
not a natural number.~An example of an object for which this supposition is
plausible might be the two-membered set$0,1%.! Then we can extend the
relation, to another well-orderingR on the natural numbers together witha
by stipulating that every natural numberR-relates toa—i.e. by treatinga as
a maximal element under the extended ordering. This shows that the natural
numbers are equinumerous with a bounded segment of a generalised tally, so
that principle ~C! would entail the existence of the number:0 of natural
numbers. On our supposition, then, the existence of:0—and in fact its elemen-
tary arithmetic—could be established on a logico-conceptual basis. This is a
satisfactorily Fregean result. The long section Iota of Part II ofGrundgesetze
is devoted to proving theorems about theAnzahl Endlos, defined as the num-
ber of finite cardinals~1893 §122, p. 150!. Our analysis suggests that Frege
was right to think that the arithmetic of:0 or Endloscould be developed on
the basis of logic and definitions alone as easily as could the arithmetic of the
natural numbers. The arithmetic of:0, however, is only the first chapter in
the long saga of transfinite arithmetic, and the analysis also suggests that this
may be the only chapter that can be developed on a purely conceptual basis.
For it is hard to see how to derive even the existence of:1 from ~C! without
making assumptions about well-orderability which~although they may very
well be true! go beyond anything that could be grounded in logic and defini-
tions alone. But while this will disappoint those who are ambitious to place
the whole of transfinite arithmetic on a logical basis, there is a coherent
logicist project which includes no such ambition. For it might be—to para-
phrase Kronecker—that logic “makes” the natural numbers, and their own
cardinality:0, whereas some other source of knowledge is required to ground
the existence of higher cardinals.

The derivation of the Peano postulates that has just been sketched rests on
the Fregean assumption that expressions meaning ‘the number of so-and-sos’
can be construed as singular terms—i.e., as expressions which at least pur-
port to designate particular, re-identifiable objects. But while this assumption
has been subject to serious challenge,18 the use of unrestricted quantification
suggests an alternative strategy for proving the postulates which may be avail-
able even to one who rejects the assumption. For suppose that a theorist
instead pursues what Dummett has called the “radical adjectival strategy”,
whereby “equations and other arithmetical statements in which numerals appar-
ently figure as singular terms are to be explained...bytransformingthem into
sentences in which number-words occur only adjectivally”~Dummett 1991,
p. 99!. For example, the equation ‘51 7 5 12’ might be explained as a
condensed version of the following claim, in which the conditional is taken
materially:
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Whatever conceptsF and G might be, if there are precisely five things
that areF and precisely seven things that areG, and nothing is bothF
andG, then there are precisely twelve things that are eitherF or G.

The problem in combining this sort of analysis of purely arithmetical state-
ments with any variety of logicism has always been that the analysis requires
an infinite domain of objects if manifest arithmetical falsehoods are not to be
transformed into truths. If, for example, there were only eleven objects, then
the matrix antecedent of the above claim would be false for any conceptsF
andG, so that a universally quantified material conditional with this anteced-
ent would be true whatever its consequent might be. This would mean that,
were there only eleven objects, the claims into which the equations ‘51 7 5
11’ and ‘5 1 7 5 13’ are transformed would be true. Needless to say, those
attracted by versions of the radical adjectival strategy have explored a num-
ber of solutions to this problem. But it is noteworthy that the natural presenta-
tion of the logic of unrestricted quantification renders it logically impossible
that there should be~speaking unrestrictedly! only finitely many objects, and
it does so without invoking the assumption that numbers are objects. For where
sn is the first-order formula which expresses ‘There are~unrestrictedly! at least
n objects’,19 each member of the sequences1, s2,... is a logical truth even in
the first-order logic of unrestricted quantification.

At least, this is so if the standard model-theoretic definition of logical truth
is extended to cover unrestricted quantification in the obvious way. For letA
be a well formed formula containing only variables, quantifiers and predicate
letters. According to the standard definition, when its variables are under-
stood to range restrictedly,A is logically true if it is true no matter which sub-
setD of the model theory’s ontologyU provides assignments for its variables,
and no matter which subsets ofDn are then assigned to itsn-place non-logical
predicate letters. It is then natural to say that when its variables rangeunrestrict-
edly, A is logically true if it is true when assignments to its variables may be
made from the entire model-theoretic ontologyU, no matter which subsets of
U n are assigned to itsn-place logical predicate letters. Now each formulasn

contains no non-logical predicate letters. Accordingly, each such formula will
be logically true if it is true when assignments to its variables may be made
from the whole ofU. And eachsn is then logically true, for the model theo-
retic ontologyU must be infinite. Or at least, it must be infinite if~for exam-
ple! Gödel’s completeness theorem for the first-order calculus is to be true.
That theorem entails that each consistent formula is satisfiable. But while~for
example! the formula

∀x∃y Sxy∧ ∀x ¬Sxx∧ ∀x∀y∀z ~Sxy∧ Syzr Sxz!

is consistent, it cannot be satisfied when only finitely many objects are avail-
able to be assigned to its objectual variables. This point is, indeed, implicit in
the standard Henkin proof of the completeness theorem. Henkin’s “term model”
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exploits the ontological resources of the model theory’s syntactic component;
and that syntactic component posits an infinite stock of variables, which con-
stitute the domain of quantification for the term model. Whether the validity
of eachsn in the logic of unrestricted quantification gives a logicist who pur-
sues the radical adjectival strategy quite what he needs to dispel the bugbear
of a shortage of objects depends upon delicate questions concerning the nature
of his logicism. But it shows how there may be varieties of logicism which
do not depend on the Fregean thesis that numbers are objects.

Even if we assume that thesis, I do not imagine that the derivation I have
given of the Peano postulates completes the vindication of Frege’s mathemat-
ical epistemology even for finite arithmetic. In order to complete this, it would
further need to be shown how the ancillary principles used in the derivation—
and ~N2*! in particular—may be ground out of the mills of analysis. We
would also need some assurance that conceptual analysis, when applied to
arithmetical notions, really is a means of gaining knowledge. We would need,
in other words, to exclude the possibility that analysis simply brings to the
surface falsehoods that are latent in our use of arithmetical terms. I venture to
conclude, however, with two comparative claims. By virtue of its more gen-
eral numerical existence principle, the derivation of the Peano postulates within
Q provides a better basis for any attempt to vindicate Frege’s epistemology of
arithmetic than does Tennant’s derivation of them from the ratchet principle.
And their derivation withinQ also improves for this purpose on their deriva-
tion from Hume’s principle. ForQ’s axioms, unlike Hume’s principle, are not
committed to the existence of anti-zero.20

Notes

1See e.g. Wright 1983, chap. 4.
2See here Heck 1993.
3Boolos 1990, p. 274. Cfr. Boolos 1997, p. 260, where he calls this worry about Hume’s prin-

ciple “perhaps the most serious of all, although one that may at first appear to be dismissible as
silly or trivial”.

4The so-called “numeration theorem” in ZF—a consequence of the axiom of choice—asserts
the converse: any set is equinumerous with some ordinal.

5Frege 1903 §157, p. 155. Compare Frege 1893 §41, p. 58, where he warns us that “it will
later turn out to be necessary to distinguish the cardinal number zero from the real number zero”.
It is worth noting in passing that, when combined with another of Frege’s doctrines—viz. that
“affirmation of existence is nothing but denial of the number zero”~Frege 1884, §53, p. 65!—
this entails an ambiguity in the expression ‘there is’. This is because the zero that is denied by
saying ‘there is’ varies from case to case. When I affirm ‘There is a golden mountain’, I am deny-
ing the natural number. I am excluding the natural number zero as an answer to the question ‘How
many golden mountains are there?’ But in saying ‘There is gold in Fafner’s cave’ I am denying
the real number. I am excluding the real number zero as an answer to the very different question
‘How much gold is there in Fafner’s cave?’

6This may, indeed, be Wittgenstein’s ground for deeming it “nonsensical to speak of thetotal
number of objects” at Tractatus4.1272. A sentence containing such a phrase will be a “nonsensi-
cal pseudo-proposition”, borne out of misconstruing the grammatical common noun ‘object’ “as a

538 NOÛS



proper concept-word”~als eigentliche Begriffswort! ~ibid.!. The fact~if it is one! that disjoining
two count nouns does not always produce another such expression explains why treating ‘object’
as a concept-word is indeed a mistake.

7See Burgess 1984 and Boolos 1987, pp. 9–10.
8If, indeed, it is apposite to talk here about an inferential “move” from one content to another.

In Grundlagen, although not inGrundgesetze, Frege writes that the content of a judgement of
equinumerosity “lets itself be taken~sich lassen auffassen! as an identity each of whose sides is
a number”~1884 §63, p. 74!. Similarly, the two sides of instances of Dummett’s principle~2! are
said to “carve up” a single content in different ways~§64, p. 75!. For an attempt to make some-
thing out of this, see Hale 1997.

9In fact, it would be better to say that we need such a logic unless we are prepared to “Rus-
sell away” formulae involving numerical terms in favour of descriptive formulae involving an
unequal-levelled numbering relation ‘n num F ’, so that ‘w~Nx:Fx! ’ is replaced by the explicitly
quantified formula ‘∃n@∀m ~m num F a m 5 n! ∧ wn# ’. See Boolos 1996. For present pur-
poses, however, nothing turns on the difference between these two approaches. So, for ease of
comparison with his work, I shall follow Tennant in considering how arithmetic might be axioma-
tized within a free logic.

10For the derivation see Tennant 1987, pp. 275–300. In fact, I simplify somewhat here. While
Boolos and Wright formulate their arithmetical theories in a language whose only non-logical
expression is the functor ‘N’, Tennant formulates his in a language with three non-logical primi-
tives: ‘N’ again; the singular term ‘0’ ~intended to mean ‘the natural number zero’!; and the func-
tion sign ‘s~j! ’ ~intended to mean ‘successor’!. For this reason, his proofs of the Peano postulates
rest upon three existence principles:

1. If there are noFs thenNxFx5 0
2. If NxFx exists and there is exactly one moreG than there areFs thenNxGxexists
3. If t 5 Nx: Fx and there is exactly one moreG than there areFs, thenNx:Gx 5 s~t !.

Now there are, I think, good reasons for preferring an approach such as Tennant’s whereby ‘0’
and ‘s~j! ’ are treated as primitives.~See Rumfitt 1999.! Those reasons, however, lie at some dis-
tance from present concerns, so for ease of comparison with Frege, Boolos and Wright, I shall
focus on the existence axioms formulated in the text, which are cast in their more restricted lan-
guage. No substantive issues are involved, for my axioms~A! and ~B! entail Tennant’s axioms
~1! to ~3! when combined with explicit definitions which will be needed in any language whose
only arithmetical primitive is ‘N’. For axiom ~B! is precisely Tennant’s axiom~2!, and it yields
his axiom~3! when supplemented with Frege’s definition of ‘s~j! ’, a definition which both Boo-
los and Wright accept. Similarly, axiom~A! yields Tennant’s axiom~1! when supplemented with
Frege’s definition of ‘0’, which they also accept.

11I shall assume for the sake of argument that principles~1! and ~2*! are so knowable. But
see the last two paragraphs of the present section.

12It should be noted, however, that ‘How many?’ questions admit of perfectly correctinexact
answers. I explore some consequences of this fact—wholly congenial, I think, to the position to
be defended here—in Rumfitt 2001.

13Cfr. Frege 1893 §37, p. 55. IfR is functional then there is at most one object to which any
given object stands in the relationR; but it is not required that there should be at least one. So
the “function” that maps each object to itsR-image need not be total, and the relation of immedi-
ately preceding, when restricted to the numbers 1 ton, is still functional.

14WhereR is any relation, its strong ancestral is the relationR* for which

R*xy a ∀F @∀z ~Rxzr Fz! ∧∀z∀w ~~Fz ∧ Rzw! r Fw! r Fy#.

See e.g. Frege 1893, §45, pp. 59–60. R’s weak ancestralR*5 is the disjunction of its strong ances-
tral with the relation of identity; see Frege 1893 §46, p. 60.
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15Frege 1893 §108, p. 137. Heck~1998, pp. 449–53! also comments upon this passage, but
with a view to showing that “Frege’s characterisation of finitude is reasonably close to Zerme-
lo’s” ~p. 453!.

16Frege in effect proved this inGrundgesetze. By Theorem 275 of that work, any strong ances-
tral is a transitive relation; by Theorem 243 the strong ancestral of a functional relation is con-
nected. So, given also that it is irreflexive~condition~iii !!, the strong ancestral of a relation meeting
conditions ~ii ! and ~iii ! will be a linear ordering. Finally, theorem 359 ofGrundgesetzeshows
that any relation meeting conditions~i! to ~iii ! will be such that any non-empty subset of its relata
possesses anR*-minimal member.

17These differences remain even when, as lawyers might put it, questions of the two kinds
are posed in relation to the same facts. Dummett remarks that

if Frege had paid more attention to Cantor’s work, he would have understood what it revealed, that the
notion of an ordinal number is more fundamental than that of a cardinal number. This is true even in
the finite case; after all, when we count the strokes of a clock, we are assigning an ordinal number rather
than a cardinal. If Frege had understood this, he would therefore have characterised the natural numbers
as finite ordinals rather than as finite cardinals~Dummett 1991, p. 293!.

But the questions ‘Which stroke was that?’ and ‘How many strokes have we heard?’ are differ-
ent, and demand different sorts of answer~‘the eleventh’, for example,versus‘eleven’!, even
though somebody who attentively counts the strokes will thereby be in a position to answer both.

Note, too, that the fact~if it is one! that well ordered relations are fundamental to cardinal
arithmetic does not show that ordinal numbers are. For it is a further step—and a problematical
one—to abstract an order-type from well ordered relations. In §86 ofGrundlagen, Frege claims
to be able to anticipate how Cantor’s notion of an order-type could be made precise~1884, p.98!.
As Harold Hodes has observed~1984, p.138!, however, the obvious attempt to generate order-
types through Fregean abstraction on well ordered relations falls foul of Burali-Forti’s paradox.

18See again Hodes 1984.
19Thuss1 might be ‘∃x1 ~x1 5 x1!’, s2 might be ‘∃x1 ∃x2 ¬ ~x1 5 x2!’,..., in which the vari-

ables ‘x1’, ‘ x2’,... are all understood to range unrestrictedly.
20For comments upon an earlier draft of this paper, I am grateful to David Bostock, Sir Michael

Dummett, Daniel Isaacson, Christopher Peacocke, Timothy Williamson, and Crispin Wright.
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