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Introduction

Subduction is the major force driving
crustal growth and recycling of conti-
nental crust. Even though evidence for
the earlier stages of subduction
remains elusive (House et al., 2002;
Stern, 2004; Kimura et al., 2005),
complex tectonic responses have been
predicted when the newly subducted
plate contains thick oceanic crust
(Cloos, 1993; Gutscher et al., 2000;
Mann and Taira, 2004; Van Hunen
et al., 2004). Basin analysis, petro-
logical studies and regional geological
and geophysical considerations have
suggested that the Late Cretaceous to
early Cenozoic tectonic evolution of
the northern South American margin
was controlled by its interaction with
the margins of an allochthonous
(Pacific-derived) and anomalously
thick Caribbean oceanic plate and its
associated arc (Burke, 1988; Kerr
et al., 1997; Pindell et al., 1998; Mon-
tes et al., 2005; Spikings et al., 2005;
Luzieux et al., 2006; Vallejo et al.,

2006; Maresh et al., 2009; Weber
et al., 2009).
Subsequent Palaeogene orogenic

phases have been linked to regional
variations in plate convergence in a
subduction setting or to oceanic accre-
tions (Pindell et al., 1998; Parra et al.,
2009; Restrepo-Moreno et al., 2009;
Vallejo et al., 2009; Jaillard et al.,
2010).
In this article, we present informa-

tion on the composition and U–Pb
crystallization and detrital ages of
Turonian and Palaeogene granitoids
and sedimentary rocks from the Sierra
Nevada de Santa Marta and the
adjacent Rancheria Basin in northern
Colombia (Figs 1 and 2). The spatio-
temporal and compositional features
of these granitoids, along with shifts
in the detrital zircon provenance of
the sandstones, suggest that both col-
lisional tectonics and the early sub-
duction of the Caribbean plate exerted
first-order control on the northern
Andean orogeny.

Geological setting

Post-Eocene strike-slip and escape
tectonics have facilitated block dis-
placement and isolation along the
Caribbean margin of northern South
America (Pindell et al., 1998, 2005;

Montes et al., 2010). The Sierra de
Santa Marta is a displaced fault-
bounded block in northern Colombia,
which is isolated from the continuous
Andean ranges by thick middle to late
Cenozoic basins (Fig. 1). Tomo-
graphic and seismological analyses
show a subducted Caribbean slab
beneath this region, dipping 17� to
the south-east down to 250 km depth
(Kellogg, 1984; Van der Hilst and
Mann, 1994; Taboada et al., 2000;
Miller et al., 2009).
The geology of the Santa Marta

Massif includes three belts (Fig. 1): (1)
Jurassic magmatic rocks with rem-
nants of 1.16–0.9 Ga high-grade
metamorphic inliers (Tschanz et al.,
1974; Cordani et al., 2005); (2) Palaeo-
zoic schists and amphibolites with
270–250 Ma orthogneisses (Cardona-
Molina et al., 2006; Cardona et al.,
2010b); and (3) allochthonous Late
Cretaceous amphibolites and schists,
which formed after metamorphism of
volcano-sedimentary Cretaceous
volcanic arc rocks (MacDonald et al.,
1971; Tschanz et al., 1974; Bustaman-
te et al., 2009; Cardona et al., 2009a,
2010c).
Two main types of granitoid units

are found in the northwestern Santa
Marta Massif: a poorly exposed
orthogneissic unit, enclosed within
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the Cretaceous volcanic-arc-derived
amphibolites and schists, and widely
exposed massive granitoid bodies.
The latter include tonalites, granodi-
orites, micaceous granites and mafic
enclaves forming the coastal Santa
Marta batholiths and a series of
smaller inland plutons all intruding
Late Cretaceous, Palaeozoic and
Grenvillian metamorphic rocks
(Figs 1 and 2).

The southeastern foothills of the
Santa Marta Massif are bounded by
the Cesar and Rancheria Basins
(Figs 1 and 2B). Evolution of the
Rancheria Basin reached a passive-
margin stage by the Aptian with
deposition of the Cogollo Group and
the La Luna Formation (Martinez
and Hernandez, 1992). An initial
Maastrichtian regression is recorded
by the neritic to prodeltaic mudstone

facies of the Colón Formation.
Regression continued with the lower
Palaeocene shallow marine to mar-
ginal shales and sandy limestones of
the Hato Nuevo and Manantial For-
mations (Etayo-Serna, 1979). The
overlying 1000 m Cerrejón Formation
includes a deltaic sequence with sand-
stones, mudstones and coal that were
deposited in <2 Ma (Bayona et al.,
2007; Jaramillo et al., 2007). This
sequence is unconformably covered
by 75 m of sandstones of the early
Eocene Tabaco Formation. To the
south-east, the Sierra de Perijá Massif
is thrust over the Rancheria Basin
(Fig. 1; Kellogg, 1984). This massif
consists of Jurassic and Palaeozoic
igneous and sedimentary rocks (Kel-
logg, 1984). Overlying Cretaceous to
Palaeogene sedimentary rocks indicate
a former connection with the Rancheria
Basin (Bayona et al., in press).

Results

Geochemistry of plutonic rocks

Whole-rock major and trace element
analyses of 21 granitoid samples from
the massive Santa Marta batholith
and several inland plutons are pre-
sented in Table S1 and in Fig. 3A,B.
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Fig. 1 (A) Digital elevation map of northern South America with Cretaceous oceanic terranes and Palaeogene granitoids (Aspden
et al., 1987; Kerr et al., 1997). (B) Geologic map of the Santa Marta and Perijá Massifs (Tschanz et al., 1974).
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Fig. 2 (A) Regional geology of the Santa Marta granitoids (Tschanz et al., 1974).
Lowercase letters are U ⁄Pb LA-MC-ICP-MS analysed samples. (B) Geology of the
Rancheria Basin (Bayona et al., 2007); letters indicate sample locations. Coordinates
are from the Bogota Observatory datum.
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Chemically, the rocks are character-
ized by high Al2O3 and Na2O (15.05–
20.74% and 2.44–4.89%) and by
enrichment in Ba and Sr (199–1693
and 274–1145 p.p.m.; Fig. 3A). They
are also enriched in large ion litho-
phile elements and depleted in the
high field strength elements; there is
variable enrichment in light rare earth
elements (LREE) (La ⁄YbN = 3.3–
16.5), and there are negative Nb–Ta
anomalies, characteristic of arc grani-
toids formed by prominent melting of
metabasaltic sources (Fig. 3A,B; Pe-
arce et al., 1984; Petford and Ather-
ton, 1996).
The orthogneiss within the meta-

morphosed Cretaceous volcanic-arc-
derived amphibolites and schists lacks
the Al2O3 and Na2O enrichment. It is
enriched in K, Rb and Th and
depleted in Nb and Ta (Fig. 3A).
LREE are also slightly enriched
[(La ⁄Yb)N = 2.27] with a well-de-
fined Eu anomaly (Eu ⁄Eu* = 0.50;
Fig. 3B). These features are charac-
teristic of typical subduction-related
magmatism (Pearce et al., 1984).

Geochronology and isotope geology

Analysed granitoid samples are pre-
sented in Fig. 2B and Supporting
information. 206Pb ⁄ 238U ages from
seventeen granitoid samples reveal
two major peaks of magmatic activity,
one at c. 65 Ma and another more
prominent peak at 58–50 Ma (Fig. 4A).
Inherited Phanerozoic and Protero-
zoic zircons are abundant (Fig. 4B)
and are similar to those that charac-

terize their host rocks (Cardona et al.,
2010a,b,c). In contrast, magmatic zir-
cons from the orthogneiss sample
record magmatic crystallization at
92.0 ± 1.7 Ma (Fig. 4A), indicating
the existence of an older Turonian
arc. Nd–Sr results from the massive
granitoids, including those from pub-
lished data (Mejı́a et al., 2008), show
unradiogenic to highly radiogenic val-
ues, with eNd varying between )10.31
and 2.39 and 87Sr ⁄ 86Sr varying from

0.70470 to 0.71096 (Fig. 5). These
patterns can be modelled by a single
mixing scenario between Atlantic sedi-
ments ⁄South American continental
crust and a metabasaltic source similar
to the accreted Caribbean arc (Fig. 5).

U ⁄ Pb detrital zircon provenance

Figure 2B shows the distribution of
Palaeogene sandstones in the Ranche-
ria Basin. Palaeocurrent analysis has
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Fig. 3 (A) Mantle-normalized multielement diagram (Sun and McDonough, 1989). (B) Rare earth elements chondrite-normalized
diagram (Nakamura, 1974). Samples from the Palaeocene–Eocene granitoids were divided into Santa Marta and inland granitoids
just for geographic purposes.

100

Intra-oceanic arc 
stage 

80

90

70

Late Collisional
stages

50

60
Renewed subduction magmatism

U
–P

b
 m

ag
m

at
ic

 a
g

es
 (

M
a)

(A) Santa Marta batholith
Inland plutons

a

b c

d e f g h i j k l m n o
p qr

(B)

5

4

3

2

1

0 400 800
Age (Ma)

1200

n = 51

Fig. 4 (A) Major plutonic events defined by U–Pb zircon geochronology in the
northwestern Santa Marta Massif. Letters a–r indicate the locations of samples in
Fig. 2; (B) inherited zircons from the analysed granitoids. Sample locations are those
from Fig. 2. Other data (grey lines) from Late Cretaceous metavolcano-sedimentary
rocks and late-collisional granitoids after Cardona et al. (2009b, 2010c).

Palaeogene subduction in the northern Andes • A. Cardona et al. Terra Nova, Vol 23, No. 1, 26–34

.............................................................................................................................................................

28 � 2010 Blackwell Publishing Ltd



shown that Palaeocene siliciclastics of
the Rancheria Basin were supplied
from the northwestern Santa Marta
Massif. In the Eocene, input also
occurred from the Sierra de Perijá
Massif to the southeast (Bayona et al.,
2007). An age plot showing the fre-
quency distribution of the detrital
zircons is presented in Fig. 6. The
lower Palaeocene Manantial Forma-
tion (170–400 m) yields Proterozoic
zircons with peaks between 1058 and
1888 Ma (Fig. 6A). These ages are
similar to those of the Grenvillian
inliers of the northern Andes, such as
those found in the Santa Marta region
(Cordani et al., 2005; Cardona et al.,
2010a), and to reworked Late Creta-
ceous passive-margin sediments
(Ayala-Calvo et al., 2010; Weber
et al., 2010). Five samples distributed
along the 1 km thick middle and
upper Cerrejón Formation include
age clusters of 94–67, 328–220 and
530–420 Ma, with some Proterozoic

peaks at c. 1.2 and 1.0 Ga (Fig. 6B–
F). The 90–65 Ma ages correlate with
the crystallization age of the orthog-
neiss, the Cretaceous metavolcano-
sedimentary rocks of northwestern
Santa Marta and plutonic rocks
drilled in the adjacent coast (Fig. 1;
Cardona et al., 2009b, 2010c). The
Triassic to Carboniferous zircons are
similar in age to metamorphosed
granitoids and detrital zircons from
Cretaceous metasedimentary rocks
from north-west Santa Marta (Cardo-
na et al., 2010b). Finally, the overly-
ing Eocene Tabaco Formation is
characterized by 70 and 60–55 Ma
peaks (Fig. 6G) and limited 1000–
1500 Ma zircons. Whereas the youn-
ger peaks correlate with the plutonic

ages reported here, the Precambrian
sources are linked to reworked sedi-
mentary rocks and Grenvillian highs
in the Santa Marta and Perijá Massifs.

Tectonic implications

The spatio-temporal distribution of
the magmatic rocks records major
shifts in the tectonic setting of the
continental margin. A crystallization
age of the orthogneiss of c. 92 Ma
combined with c. 80 Ma peaks in
detrital zircons from intra-oceanic
metavolcano-sedimentary rocks indi-
cates that older arc magmatism was
active during this time interval (Car-
dona et al., 2009b, 2010c). This arc
was formed at the margins of the

Fig. 5 Sr–Nd isotopes from the Santa
Marta and inland Palaeogene granitoids
(data from this work = ), published
data after Mejı́a et al., 2008 = n).
Trend supports two-component single
mixing of Cretaceous intra-oceanic
rocks from Santa Marta and Atlantic
sediments (White et al., 1985; Cardona
et al., 2010a,b,c). Data for two-compo-
nent single mixing calculations include
Caribbean accreted intra-oceanic arc
from Santa Marta (Cardona et al.,
2010a,b,c), MORB (White and Hofman,
1982) and Atlantic sediments (White
et al., 1985). The Atlantic sediments
field overlaps with the field of Precam-
brian crust from northern South Amer-
ica (Cordani et al., 2005). Equations are
after Faure and Mensing (2005). Com-
positional fields for Caribbean mag-
matic provinces and MORB are after
Kerr et al. (2003), Thompson et al.
(2004) and Jolly et al. (2006).
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allochthonous (Pacific-derived) Carib-
bean oceanic plate (Fig. 7A). Meso-
zoic magmatic activity intruding the
South American active margin in the
Santa Marta region ended in the Early
Cretaceous (Tschanz et al., 1974; Pin-
dell and Kennan, 2009). Correlatable
accreted intra-oceanic arc remnants
are found within adjacent massifs in
the Guajira region of northeastern
Colombia and in Bonaire (Thompson
et al., 2004; Weber et al., 2009, 2010).
On the other hand, sedimentation

within the Rancheria Basin indicates
limited subsidence and a passive-
margin setting (Martinez and Hernan-
dez, 1992; Bayona et al., in press),
suggesting a contrasting tectonic set-
ting. Hence, the Rancheria Basin and
the allochthonous Late Cretaceous arc
probably approached each other dur-
ing the interval 80–65 Ma, as a likely
consequence of the eastward progress
of the latter.
By 70 Ma, arc–continent collision

was in progress, as suggested by the
resetting of Ar–Ar ages in the Palaeo-
zoic basement (Cardona-Molina et al.,
2006) and late tectonic granitoids and
by Ar–Ar cooling ages from high-
pressure rocks in Guajira (Cardona

et al., 2009b; Weber et al., in press).
We relate the older c. 65 Ma plutonic
peak in Santa Marta and contempo-
raneous Barrovian metamorphism in
the allochthonous volcanic-arc-
derived amphibolites and schists
(Bustamante et al., 2009; Cardona
et al., 2009a) to this collisional event,
which eventually led to subduction of
the Caribbean plate under the north-
western South American margin after
flipping of the subduction polarity and
strong compression during the early
phase of renewed subduction (Fig. 7B;
Shemenda, 1992; Davies and von
Blanckenburg, 1995; Teng et al.,
2000; House et al., 2002; Regard et
al., 2008; Nikolaeva et al., 2010).
From 58 to 50 Ma, arc-related

granitoids show that subduction oc-
curred at the continental margin
(Fig. 7C). Their high contents of
Al2O3, Na2O and Sr, their REE pat-
terns and their Sr–Nd isotopes are
compatible with melting of meta-
basaltic rocks and continental crust ⁄
subducted sediments (Fig. 5; Kay and
Kay, 1991; Rapp and Watson, 1995;
Petford and Atherton, 1996). These
sources are compatible with the melt-
ing of Caribbean oceanic crust and

continental crust tectonically under-
plated during the arc–continent colli-
sion and initiation of subduction
(Arculus et al., 1999; Draut et al.,
2002; Saito et al., 2007).
Some of the Eocene granitoids

intrude accreted back-arc and oceanic
rocks (Cardona et al., 2010c), which
suggests an emplacement proximal to
their related palaeotrench (Fig. 7C).
This spatial feature and the geochem-
istry of the granitoids are attributed to
abnormal shallow melting facilitated
by mantle upwelling during early
subduction (Peacock et al., 1994;
Keleman, et al. 2003; Gorczyk et al.,
2007). Tomographic analyses have
shown the existence of a subducted
Caribbean slab beneath the Santa
Marta region, dipping 17� down to
250 km depth (Van der Hilst and
Mann, 1994; Miller et al., 2009).
Assuming convergence rates as low
as 3.7–6.5 mm a)1 (Müller et al.,
1999), subduction must have begun
by c. 65 Ma, in agreement with the
magmatic record.
Shifts in the detrital record provide

additional tectonic constraints. The
Palaeocene Manantial Formation in
the Rancheria Basin includes Protero-

Fig. 7 Tectonic model for the northern Andes and Caribbean region (after Pindell et al., 2005). 90–70 Ma: Intra-oceanic arc
evolution; c. 92 Ma emplacement of arc granitoids. This intra-oceanic arc magmatism persisted until c. 76 Ma (Weber et al., 2009).
70–65 Ma: Accretion of Great Caribbean Arc in northwestern South America and Caribbean oceanic plateau at its eastern margin
(Vallejo et al., 2006, 2009; Cardona et al., 2009b). Late-collisional magmatism and metamorphism associated with slab break-off,
polarity flip and the initiation of subduction. 60–50 Ma: Active subduction zone with associated magmatism, uplift and basin
filling.
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zoic zircons and metamorphic and
sedimentary lithics (Bayona et al.,
2007), which we relate to the erosion
of passive-margin deposits exposed
during arc–continent collision (Ayala
et al., 2010; Weber et al., 2010). The
thick 60–58 Ma Cerrejón Formation
contains zircons with ages of 90–65
and 290–220 Ma, recording the ero-
sion of the northwestern basement
and the accreted arc and the late-
collisional magmatism (Fig. 1B). This
distal filling sourced from the north-
west overlaps the initiation of mag-
matism and reflects the localized uplift
and subsidence that characterized
initial subduction stages (House et al.,
2002; Nikolaeva et al., 2010).
The final record includes early

Eocene erosion of the Palaeogene arc
recorded in the Tabaco Formation, a
magmatic hiatus after c. 50 Ma, angu-
lar unconformity and block uplift in
the adjacent Cesar Basin and Perijá
Massif (Fig. 7C; Tschanz et al., 1974;
Kellogg, 1984; Bayona et al., in press).
These events can be related to the
shallow subduction and increase in
convergence obliquity of the thick
Caribbean plate under South America
(Mauffret and Leroy, 1997; Pindell
et al., 1998; Müller et al., 1999; Van
Hunen et al., 2004; Gerya et al., 2009;
Royden and Husson, 2009).

Andean orogeny

Palaeogene palinspastic restorations
link the Santa Marta Massif and
Rancheria Basin to the continuous
northern Andean chain (Fig. 1; Pindell
et al., 1998; Gomez et al., 2005; Mon-
tes et al., 2010). The northern Andes in
Colombia and Ecuador experienced
several diachronous exhumation
events at 73–65, 65–55 and 45–30 Ma
(Spikings et al., 2001; Gomez et al.,
2005; Vallejo et al., 2006; Martin-
Gombojav and Winkler, 2008;
Villagómez et al., 2008; Parra et al.,
2009; Restrepo-Moreno et al., 2009).
There is also evidence of Eocene plu-
tonism and of a late Eocene–Oligocene
magmatic hiatus (Aspden et al., 1987),
and tomographic imaging reveals a
remnant Caribbean slab over the Naz-
ca plate (Van der Hilst and Mann,
1994; Taboada et al., 2000).
Tectonic models of the Caribbean

plate suggest that it was formed in the
Pacific by the growth of several Cre-
taceous oceanic volcanic plateaus

(Duncan and Hargraves, 1984; Burke,
1988; Pindell and Barrett, 1990; Kerr
et al., 2003). As this plate migrated
from the Pacific, its diachronous inter-
action with the northwestern margin
of South America began in the late
Albian (Pindell et al., 2005; Maresh
et al., 2009). Whereas the Late Creta-
ceous orogenic events in the northern
Andes can be related to the collision
of the arc and plateau plate margins of
the Caribbean plate (Fig. 7B; Pindell
et al., 2005; Vallejo et al., 2006; Jail-
lard et al., 2010), we suggest that the
late Palaeocene to Eocene events are
related to the early subduction of the
thick Caribbean plate.
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definidos por análisis de procedencia.
Geol. Colomb., 32, 21–46.

Bayona, G., Montes, C., Cardona, A.,
Jaramillo, C., Ojeda, G., Valencia, V.
and Ayala-Calvo, C., in press. Intraplate
subsidence and basin filling adjacent to
an oceanic arc-continent collision: a case
from the Southern Caribbean South
America plate margin. Basin Res., doi:
10.1111/j.1365-2117.2010.00495.x.

Burke, K., 1988. Tectonic evolution of the
Caribbean. Annu. Rev. Earth Planet Sci.,
16, 201–230.

Bustamante, C., Cardona, A., Saldarriaga,
M., Garcı́a-Casco, A., Valencia, V. and
Weber, M., 2009. Metamorfismo de los
esquistos verdes y anfibolitas pertene-
cientes a los Esquistos de Santa Marta,
Sierra Nevada de Santa Marta (Colom-
bia): ¿registro de la colisión entre el Arco
Caribe y la margen Suramericana? Bol.
Cien. de la Tierr., 25, 7–26.

Cardona, A., Garcı́a-Casco, A., Valencia,
V., Weber, M. and Pepper, M., 2009a.
Coastal Cretaceous Metamorphic Com-
plexes of the Sierra Nevada de Santa
Marta: a Record of Collision and Sub-
duction. Workshop �Subduction Zones of
the Caribbean�, Havana, Cuba, March
13–25. Available at: http://www.ugr.es/
~agcasco/igcp546/.

Cardona, A., Valencia, V., Bayona, G.,
Jaramillo, C., Ojeda, G. and Ruiz, J.,
2009b. U ⁄Pb LA-MC-ICP-MS zircon
geochronology and geochemistry from a
post-collisional biotite granite of the
Baja Guajira basin, Colombia: implica-
tions for Late Cretaceous and Neogene
Caribbean-South America tectonics.
J. Geol., 117, 685–692.

Cardona, A., Chew, D., Valencia, V.,
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