
Fourier Theory and applications

1 Introduction

A significant number of computational problems in physics fall into the general
topic of Fourier transform methods or spectral methods. In many cases, using
the Fourier transform is simply an efficient computational tool for manipulating
data. For some reason, Fourier methods are not always discussed in detail
as numerical integration or solving differential equations, but in fact Fourier
methods can be used for solving ODEs or PDEs in an efficient way, or doing
convolutions or deconvolutions much faster than time domain algorithms.

Some applications include

• signal processing: filtering, sampling, reconstruction

• statistics: mean/variance,central limit theorem, noise, correlation and
drift

• optics: diffraction, antenna theorem, interferometry

2 What is the Fourier Transform?

For a suitable function f of a single real variable the definition of the Fourier
transform is:

f̂(ν) = F [f] =

∞∫
−∞

f(t)e−2πiνtdt (1)

This operation takes a real function and generates from it another complex-
valued function, that is, a function of a single variable (here ν) that has a real
part and imaginary part. We can think of this as a kind of linear mapping: a
function goes in, and another (complex) function comes out.

It is easier to start with the idea of synthesizing a complex function f rather
than a real one. What does the transform mean? In loose physical terms the
Fourier transform (well write FT, from now on) produces a complex amplitude
spectrum that shows how large the amplitude of the cosine and sine functions
must be at each frequency ν, in a decomposition of the function into periodic
parts, parts that each have a definite frequency. When the independent vari-
able is a coordinate is space, wavenumber, which we will write as k , is more
appropriate. Imagine building up the function f from (an infinite) sum of sines
and cosines; this may sound implausible for an infinite interval, and indeed, not
every function can be built like this, but many can. Because we must allow
every possible frequency of sine and cosine, the sum must be an integral, which
we would write:

f(t) =

∞∫
−∞

f̂(ν)e+2πiνtdν (2)

1

For a particular frequency ν, the contribution to the sum is just

e[2πiνtf̂(ν) = (cos(2πνt) + i sin(2πνt))f̂(ν) (3)

You can see this function is a sine wave, but it has real and imaginary parts.
As a function of t , the function in (3) repeats itself exactly, with period 1/ν;
for functions in space the corresponding quantity is of course the wavelength,
λ = 1/k . If the magnitude of the amplitude function |f̂(ν)| is large at some
frequency ν0 compared to that at any frequency, we would expect f(t) built by
(2) to approximate a complex cosine wave with frequency ν0.

As an illustration, consider the function ĝ(ν) which is a Gaussian hump with
its peak at ν0 shown in Figure 1a:

ĝ(ν) = e−(ν−ν0)
2/2σ2

(4)

where σ is a standard measure of the width. If we plug this into (2) we get (by
methods we shall not describe in this class)

ĝ(ν) =
√

2πσe−2π2σ2t2e2πiν0 (5)

You see g is a product of two exponential factors, a Gaussian hump of width
1/2πσ, and a complex cosine term with frequency ν0. As σ becomes small, and
the amplitude of ĝ(ν) is more and more concentrated at ν0, g looks more and
more like a pure complex cosine, since the width of the Gaussian factor grows
larger.

If you accept the plausibility of the idea that you can build a non-periodic
function from a sum of periodic parts, the next question is, Given a function
f , how do we find the corresponding amplitude function f̂? Of course, the
answer has already been provided by (1). Remarkably, the amplitude calculating
formula, (1) is almost the same as the synthesizing expression, (2). The only
difference is the sign change in the exponential. Equation (2) is called the inverse
Fourier transform, and can be written

f(t) = F−1[f̂] (6)

Obviously, if you take the FT of a function and then take the inverse FT of
the result, you should get back the function you started with. This is exactly
true only for moderately well behaved functions, as you can see in discussions
elsewhere.

A brief discussion of notation is in order. There are several slightly different
conventions for the FT. I use the one with the factor 2π in the exponent, which
has always been the engineering practice and has become the standard in the
applied math literature. A physicists form with a (2π)12 outside. There are good
reasons for preferring my notation, and I strongly recommend using it. First,
there no other factors of 2π to remember in any of the other related results,
the Convolution Theorem, Parsevals Theorem, etc., while all other notations
have random factors; second, the parameter ν is a frequency, not an angular

2

ν=0 ν=ν
0

ν=0 ν=ν
0

Re[g(x)]

abs[g(x)]

Imag[g(x)]

abs[g(x)]Re[g(x)]

Imag[g(x)]

Frequency Time

Figure 1: Fourier relations for Gaussian functions

frequency in radians per second, and 1/ν is a period or a wavelength, and so
much easier to identify with a physical scale, not six times the scale. I use the
notation f̂ for the FT, which is common in the mathematical work, while other
people have f̃ , which is completely unheard of! Some authors will use F for the
FT of f .

Two physical realizations of the FT that come to mind. The acoustical idea
of decomposing a sound into its component frequencies, something suggested by
musical tradition for sounds that are nearly periodic. If the pressure time series
is p(t), and its FT is p̂(ν), then the magnitude squared |p̂(ν)|2dν is the acoustical
power (or energy, these terms seem to be interchangeable in this context) in the
frequency band ν to ν + dν; conventionally, we might use f or v for frequency,
not ν; for us f is unsuitable because I like to reserve this letter for the name of
a function. A second familiar illustration comes from optics: the spectrum of
a light source. Here we usually think of the intensity of the light as a function
of wavelength, but a light signal in space f(x) can be Fourier transformed and
the magnitude squared |f̂(ν)|

2
is the spectrum as a function of wavenumber

k = 1/λ. However, a proper model of light requires the concept of the FT of a
random process, called the power spectrum, something we will be briefly talking
about below.

You will probably be troubled by the fact even when we start with a real
function in (1) we get a complex one out (though not always, as we shall see).
What does this mean? Looking again at the process of building up a function

3

from its Fourier spectrum, equation (2), and thinking about all the functions
that can be built by summing the real part, you will see that cosine functions of
the form cos 2πνt with different real amplitudes can make only even functions of
t . An even function must satisfy F (t) = F (−t), but obviously not all functions
are even. Similarly, sums of sines are always odd functions, with F (t) = −F (−t).
While in general a function is neither even nor odd, every real function can be
written uniquely as a sum of an odd and an even part. So it turns out that the
real part of the FT copes with the even part of the function and the imaginary
part with the odd part; in general both parts are necessary. While on this topic,
we note the following easily demonstrated symmetry: when f(t) is real, then the
real part of f̂(ν) is always an even function, and the imaginary part is always
odd.

I will not discuss some of the conditions needed for a function f so that (2)
is valid. But I want to note that there are some functions that don’t quite follow
the basic rules for (2) to hold. They are distributions or generalized functions,
and are treated rigorously by using the idea of an equivalence class, this time
a class of sequences of functions, but that goes beyond this course. One of this
fucntions is for examplethe Delta function.

3 Fourier transform for discrete data

We now turn from Fourier theory to the subject of digital signal processing;
though as we will see, much of what would be covered in the literature will be
used here. However, our treatment will have a distinctive flavor, deriving from
the nature of digital signals. The theory of the Fourier transform assumes that
what is being transformed (and the transforms themselves) are functions (even
if generalized) on the real line or a higher-dimensional equivalent. We may say
that, if we view these functions as functions of time, that they are defined in
continuous time. However, digital signals are, intrinsically, not so defined:
they are collections of numbers, representing (usually) a continuous time signal
sampled at regular intervals. Such functions are called sampled data and may
be said to be defined in discrete time.

We begin by describing how Fourier theory works applied to such data, for
a special case:

• Discrete-time data defined over a finite range. This is of course what we
usually have to deal with. The Fourier transform of this turns out to
be a finite amount of discrete frequency data, giving the same similarity
between a function and its transform that we had in the original definition.
This Fourier transform of a finite amount of discrete time data is called
(what else?) the Discrete Fourier Transform or DFT.

We will not spend much of our time exploring the properties of the DFT, rather
just outlining ,the computation of the DFT, which can be done very efficiently
using the Fast Fourier Transform, or FFT.

4

We suppose that our sequence {xn} is finite in length, with terms x0, x1, . . . xN−1

(N in all), rather than infinite. How do we now define the Fourier transform?
We start in what is a somewhat unusual way, at least in terms of signal process-
ing, which is to consider the fitting of sine waves to the data. We can always
represent the data as some sum of sine waves plus a residual:

xn =
L−1∑
l=0

Cle
2πinνl + εn, n = 0, 1, · · ·N − 1 (7)

where the frequencies ν0, ν1, · · · are given. The least-squares criterion would
tell us to choose the coefficients Cl so as to to minimize the sum of squares

L−1∑
l=0

|εn|2.

with solution

Cl =
1
N

N−1∑
n=0

xne−2πinl/N , (8)

where the l sampling is done this way for a reason (which one?).
A more apropriate definition of the Discrete Fourier Transform or DFT is

x̂k =
N−1∑
n=0

xne−2πink/N , (9)

which, if we compare it with the definition of the Fourier transform of an infinite
sequence, shows that

x̂k = X(f) for f = k/N (10)

This is thus a sampled version of the continuous-frequency transform. The
inverse Fourier transform is then

x̂n =
N−1∑
n=0

xke+2πink/N , (11)

which can be shown to be correct below.

x̂n =
N−1∑
n=0

xke+2πink/N

=
N−1∑
n=0

N−1∑
m=0

xme−2πimk/Ne+2πink/N

=
N−1∑
n=0

N−1∑
m=0

xme+2πik(n−m)/N

=
N−1∑
m=0

xmNδmn = xn

5

where the next-to-last step makes use of the orthogonality relationship. We thus
have a transform pair - the DFT and the inverse DFT - between finite length
sequences of numbers.

4 The Fast Fourier Transform

So, how many computer calculations are needed to obtain the DFT of a series
with N points? In general, matrix multiplications require N2 complex multipli-
cations plus a small number of other operations. So, the FT appears to be an
O(N2) process. But, with an algorithm known as the fast Fourier transform it
can be computed with O(N log N) operations. This difference is BIGGGG.

We will not reinvent the wheel and we will not really learn how the FFT
algorithm works. The basic idea you need to remember is that for a special
case, when N is an integer power of 2, the FFT is the fastest. The number of
calculations is reduced because Danielson and Lanczos showed that the DFT of
N length can be rewritten as the sum of two DFTs, each of length N/2. One of
the two is formed from the even-numbererd points of the original N , the other
from the odd-numbered points. I will not show the proof.

We will use for the DFT an algorithm known as FFTW, the fastest Fourier
transform in the West. This is the same FFT that Matlab and other programs
use. It has a large number of subroutines and you can download it from the
web. The FFTW asks as a first step the number of points N and then you can
perform the FFT, but I have created a driving program that will just let you
call

call fft(x,N,y)

with y as the output. Note y may need to be complex-valued. The subroutine
is part of the libgprieto.a. You can, if you prefer, use your own FFT.

5 Some applications

Fourier methods have revolutionized fields in science and engineering, from ra-
dio astronomy to medical imaging, seismology, etc. According the Numerical
Recipes (NR) the wide application of Fourier methods may be credited mainly
to the existence of the FFT, given the speeding up of non-trivial algorithms. Di-
rect applications of the FFT are convolution and deconvolution, correlation and
autocorrelation, optimal filtering, power spectrum estimation and computation
of Fourier integrals as well as solving PDEs.

5.1 Convolution and Deconvolution

We can define the convolution of two functions for the continuous case as

r(t) = s ∗ u =

∞∫
−∞

s(τ)u(t − τ)dτ (12)

6

where s ∗ u denotes convolution. Now, the convolution theorem states that

s ∗ u � ŝ(ν)û(ν) (13)

In other words, the Fourier transform of the convolution is just the product of
the individual Fourier transforms. The convolution theorem is fairly easy to
prove and I will leave this to you.

It is important to know, that you can compute the convolution in the time
domain, but as the number of points gets large, it turns out to be much faster
to take the FFTs of each signal and then inverse FFT.

So, once you know how to use the FFT, convolution is quite simple. One
interesting question then arises. If convolution is just multiplication in the
frequency domain, we might expect to perform deconvolution by a division in
the frequency domain, right? The short answer is yes. At first glance the answer
seems easy using the Convolution Theorem: since r̂ = ŝû, and û is known, we
just divide by û and then take the inverse FT: s = F−1[r̂/û]. Unfortunately in
most practical systems, when û gets very small the recovered signal is obtained
by amplifying small values. Additionally, these small values are often submerged
by noise in the system, and so this deconvolution succeeds only in amplifying
noise, not true signal. Deconvolution is therefore an unstable procedure and
straight division of the FTs hardly ever works; the process must be regularized,
a topic we will meet in later sections.

One note of caution. Convolution for discrete signals may be contaminated
by wrap-around effects, so it is recommended that you pad your signals with
zeroes at the ends to avoid this.

5.2 Correlation and autocorrelation

Similar to convolution, correlations and autocorrelations can be computed using
the FFT. We will not work discuss this, but you can easily derive the way to
compute correlations between signals (or the signal with itself) using the FFT.

5.3 Power Spectrum estimation

In sciences there is a continuing interest in the spectral analysis of various
sorts of recorded or gathered data series. In some cases the researcher may be
interested in isolating single frequencies embedded in some noise (e.g., normal
mode seismology, solar modes, climate data, etc.) or in a continuous spectrum
whose shape may be related to simple functional forms with a few parameters
used to describe it (source physics, bathymetry). In general, the Power spectral
density function (PSD) describes the power of each frequency contained in the
time series signal.

The periodogram , which is one of the early estimation procedures of the
PSD is defined as

P (f) =

∣∣∣∣∣
N−1∑
n=0

xne−2πifn

∣∣∣∣∣
2

(14)

7

where x is a sequence of data points (unit sampling rate assumed here), N is
the total number of points of the sequences and f is the frequency. Note here
that the frequency variable f is continuous and so we are in fact trying to find
a function P (f) from the finite series x(t).

You might think that the periodogram is all you need to know, but as you
can read in various papers and the literature, the PSD is an estimate, not a
direct measurement. As stated above, we are really trying to find a continuous
function out of a discrete data set xn.

It turns out that the periodogram is not a particularly good choice for an
estimate of the PSD. It has been known for a long time, that windowing is
necesary, so a better estimate is the windowed periodogram, where

PW (f) =

∣∣∣∣∣
N−1∑
n=0

anxne−2πifn

∣∣∣∣∣
2

(15)

we multiply the data sequence xn with a window or taper an before actually
performing the FFT calculation. The window an can be one out of many choices
including the Hanning, Hamming, Bartlett’s, prolate, triangular windows. The
periodogram is basically like using a boxcar window.

An even more advanced choice is to use the multitaper algorithm, which as
the name suggests, use a number of tapers instead of only one. We will not talk
about this particular choice, but it may be a good idea for you to know that it
exists.

5.4 Filtering

Suppose that you have a signal you want to filter digitally. It could be that the
signals is contaminated by noise of some sort. For example, signals in many cases
are corrupted by 60 Hz power-line interference and the underlying, uncorrupted
signals lies somewhere inmersed below the noise.

Although we can perform filtering in the frequency domain, by convolving
the signal x(t) with some other function u(t) so that the noise part of the signal
is reduced as much as possible. In the frequency domain we could simply have

C(ν) = X(ν)U(ν) (16)

where the spectrum of the filter U(ν) has small amplitudes in the frequency
range where the noise is dominating (say around 60 Hz for example). We can
then design a filter U(ν) as a high-pass, low-pass, band-pass or band-stop filter,
also known as notch filter (see figure).

Now, although we are in Fourier theory, I wish to show to you a filter that
is not designed in the frequency domain but rather in the time domain. It is
really up to you to choose the way you design your filter, but for simplicity we
will use available filters that somebody else has already developed.

8

.0 .4.2
.0

.4

.2

.8

.6

Frequency

R
es
p
o
n
se

.0 .4.2
.0

.4

.2

.8

.6

Frequency

R
es
p
o
n
se

.0 .4.2
.0

.4

.2

.8

.6

Frequency

R
es
p
o
n
se

.0 .4.2
.0

.4

.2

.8

.6

Frequency

R
es
p
o
n
se

Figure 2: Ideal frequency-selective filters: the four commonest types. The parts
of the frequency band for which the response is 1 are called the passband(s);
where the response is 0 is the stopband(s). The dashed lines show the region in
which (for most design methods) the response goes from 1 to 0 (not necessarily
linearly as shown here), which is called the transition band.

5.4.1 Linear filters

The most general linear filter takes a sequences xn of input points and produces
a sequence yn of output points using the formula

yn =
M∑

k=0

ckxn−k +
N∑

j=1

djyn−j (17)

Here the M +1 coefficients ck and the N coefficients dj are fixed and define the
filter response. The filter above produces each output value from the current
and M previous input values, and from its own N previous output values. if
N = 0, so that there is no second sum, then the filter is called a nonrecursive
or finite impulse response (FIR). If N 6= 0, then it is called an infinite impulse
response filter or (IIR). The IIR means that one could make the impulse response
be very long, although in general the response decays as N gets big, becoming
negligible.

The relation between the ck’s and dj ’s and the filter response U(ν) is

U(ν) =

M∑
k=0

cke−2πik(ν∆)

1 −
N∑

j=1

dje
−2πij(ν∆)

(18)

where ∆ is the sampling interval.

5.4.2 Subroutine

Again, it is not our intention to learn how to desing the filters, just the fact that
we could if we wanted to. For this class, we will use already designed filters.
The way we call for example a bandpass filter is

call bandpas (fmin, fmax, x, N)

9

where fmin and fmax represent the low and high frequencies that limit the
frequencies that are expected to be passed. Note that in this particular case the
input signal is also the output signal, so you loose the original information, it is
overwritten.

The subroutine bandpass is part of the library we are using in libgprieto.a.
For your information, this filter is a Butterworth recursive filter. There are many
other filters but this one is used extensively in the scientific community because
it is simple. Nevertheless other filters like the Kalman filter or Chebyshev filters
may be ore suited for your particular problem.

10

