Ordinary Differential Equations (ODEs)

1 Computer Simulations

Why is computation becoming so important in physics? One reason is that
most of our analytical tools such as differential calculus are best suited to the
analysis of linear problems.

For example, you probably have analyzed the motion of a particle attached
to a spring by assuming a linear restoring force and solving Newton’s second
law of motion. In this case, a small change in the displacement of the particle
leads to a small change in the force. However, many natural phenomena are
nonlinear, and a small change in a variable might produce a large change in
another. Because relatively few nonlinear problems can be solved by analytical
methods, the computer gives us a new tool to explore nonlinear phenomena.

Another reason for the importance of computation is the growing interest
in systems with many variables or with many degrees of freedom. Computer
simulations are sometimes referred to as computer experiments because they
share much in common with laboratory experiments.

The starting point of a computer simulation is the development of an ideal-
ized model of a physical system of interest. We then need to specify a procedure
or algorithm for implementing the model on a computer and decide what quan-
tities to measure. The results of a computer simulation can serve as a bridge
between laboratory experiments and theoretical calculations. In some cases we
can obtain essentially exact results by simulating an idealized model that has
no laboratory counterpart.

The results of the idealized model can serve as a stimulus to the development
of the theory. On the other hand, we sometimes can do simulations of a more
realistic model than can be done theoretically, and hence make a more direct
comparison with laboratory experiments. Computation has become a third way
of doing physics and complements both theory and experiment.

Computer simulations, like laboratory experiments, are not substitutes for
thinking, but are tools that we can use to understand natural phenomena. The
goal of all our investigations of fundamental phenomena is to seek explanations
of natural phenomena that can be stated concisely.

2 Differential equations

Differential equations play a central role in many subjects of physics. It is
therefore clear that numerical solutions to differential equations are a central
issue in computational physics.

Many so called textbook cases studied in mathematical courses or physics are
not very often found in real physics life. The simple models we can solve using
math have in many cases many assumptions that make the explicit solution



feasible. If we would put all our physics knowledge into our problem, it would
be very difficult to solve.

For example, we know very well the physics of wave propagation in a per-
fectly elastic medium. Once we put 3D structure, the mathematical solution
because increasingly cumbersome. Think of adding anelasticity or anisotropy.
This problems cannot be solved directly and one escape is to ask for help from
the computer.

Most of the time the interesting equations are either trivial or impossible
to solve analytically. Here we want to concentrate on standard techniques as
well as more complicated cases. There is no best method to solve a differential
equation.

There are five main types of differential equations,

e ordinary differential equations (ODEs), discussed in this chapter for initial
value problems only. They contain functions of one independent variable,
and derivatives in that variable. The next chapter deals with ODEs and
boundary value problems.

e Partial differential equations with functions of multiple independent vari-
ables and their partial derivatives, covered in chapter 15.

e So-called delay differential equations that involve functions of one depen-
dent variable, derivatives in that variable, and depend on previous states
of the dependent variables.

e Stochastic differential equations (SDEs) are differential equations in which
one or more of the terms is a stochastic process, thus resulting in a solution
which is itself a stochastic process.

e Finally we have so-called differential algebraic equations (DAEs). These
are differential equation comprising differential and algebraic terms, given
in implicit form.

In this first section we restrict the attention to ordinary differential equa-
tions. We focus on initial value problems and present some of the more com-
monly used methods for solving such problems numerically. One example will
likely deal with two-point boundary problems. The physical systems which are
discussed range from the classical pendulum with non-linear terms to the physics
of motion to stars. We will later focus on partial differential equations, where
we have to be careful in studying them. We will focus on wave propagation in
simple media.

e The order of the ODE refers to the order of the derivative on the left-hand
side in the equation
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This equation is of first order and f is an arbitrary function. A second-
order equation goes typically like

d?y

A well-known second-order equation is Newtons second law

— = —kzx (3)

where k is the force constant. ODE depend only on one variable, whereas

partial differential equations like the time-dependent wave equation
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may depend on several variables. In certain cases, the wave function can

be factorized in functions of the separate variables, so that the equation
can be rewritten in terms of sets of ordinary differential equations.

We distinguish also between linear and non-linear differential equation
where e.g.,
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is an example of a linear equation, while
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is a non-linear ODE.

Another concept which dictates the numerical method chosen for solving
an ODE, is that of initial and boundary conditions. To give an example, in
a study of stars, we may need to solve two coupled first-order differential
equations, one for the total mass m and one for the pressure P as functions
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where p(r) is the mass-energy density. The initial conditions are dictated
by the mass being zero at the center of the star, i.e., when r = 0, yielding
m(r = 0) = 0. The other condition is that the pressure vanishes at the
surface of the star. This means that at the point where we have P = 0
in the solution of the integral equations, we have the total radius R of
the star and the total mass m(r = R). These two conditions dictate the



solution of the equations. Since the differential equations are solved by
stepping the radius from r = 0 to r = R, so-called one-step methods (see
the next section) or Runge-Kutta methods may yield stable solutions.

In the solution of the wave equation for a particle in a potential, we may
need to apply boundary conditions as well, such as demanding continuity
of the wave function and its derivative.

e In many cases it is possible to rewrite a second-order differential equation
in terms of two first order differential equations. Consider again the case
of Newton’s second law. If we define the position z(t) = y(V)(t) and the
velocity v(t) = ) (t) as its derivative

dy(l) dx (2)
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we can rewrite Newton’s second law as two coupled first-order differential
equations
duy®
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3 Solution of ODEs
Consider the differential equation
d
o =y(@) = f(x,y) (12)
If f is a function of x alone, we can solve for y
dy
b A 13
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but this would be an uninteresting case, so we assume f is a function of variables
x and y.

Let’s consider the Taylor series expansion of y(x)

2
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and we could clearly start adding more and more derivative terms. But the
original differential equation gives us the derivative y’ at any point. If we also
know the value of y at some point zg, yo = y(zo) we could approximate the
function by a Taylor series expansion truncated to two terms

y(x) = yo + (z — 20)y' (o) (17)



3.1 Euler method

If we introduce a step-size variable h, such that h = x — zy then we can rewrite
the previous expression

y(xo+h) = yo+hf(xo,yo) (18)
= Yo+ hfo (19)

where we simple have introduced simple abbreviations.

This scheme presented is known as the simple Euler method, first introduced
by Leonhard Euler (Swiss, 1707 - 1783), one of the most influential mathemati-
cians ever. Even though half- and eventually fully blind he published 500 books
and a total of 886 studies

It works as moving the solution along, one step at a time. Typically one
would divide the interval one is interested in into steps of size h, solve for the
solution at x = xg + h and use the solution as a new ¥y until the end is reached.
Making the step size smaller increases the accuracy and can be used for result
checking.

As an example, let’s consider

y'(2)=y"+1
on the interval 0 < z < 1 with the boundary condition y(0) = 0. The analytic
result is

y(w) = tan(z)
Note that in order to solve this ODE we NEED one boundary condition. In
the case of higher order ODEs or couples of ODEs we will need more boundary

conditions to get a unique answer.
Coding this is actually pretty simple, namely

! Initialize variables

xi = 0.d0
xe = 1.0d0
h = 0.05d0

N = int((xe-xi)/h) + 1

! Initial boundary condition

xs = 0.d0
ys = 0.d0
xeu(1) = xs
yeu(1) = ys

! Perform Euler solution

doi=1, N-1
call euler(funl,xeu(i),yeu(i),xeu(i+1),yeu(i+1),h)
enddo



and the subroutine euler is

ys_prime = fun(xs,ys)

xf

Xxs+h

yf = ys + h*xys_prime
and we need a function called funil that represents our y'(x)

real(8) function funl(x,y) result(z)

z = y**2 + 1.d0

end function funl

You may note that I have used double precision in my calculations. It is
probably not necessary in this case, but it is good practice to always do it with
higher precision, because sometimes that may be the difference between the
right result and a pretty bad one.

Below, the figure that shows the effect of the choice of h. The red line is the

h=0.20 o8 h=0.15

" h=0.10 o h=0.05

exact solution, and the other our approximate solution. As expected, as h gets
smaller so do the errors.



It becomes also pretty clear that the Euler method has several deficiencies.
e The errors heavily depend on the choice of h.

e As we make h smaller, we get a better result, but we may also need more
calculations.

e The error, once introduced, is carried on progressively.

e It would be better to work with median values, e.g. the derivative halfway
through the step.

4 Modified Euler or the Runge-Kutta of 2nd or-
der

One possible refinement of the Euler method as expressed above is to use the
derivative half-way through the step. The problem with this kind of refinement
is that one has to evaluate the derivative at the midpoint of the step interval,
but the required value of y there is not known beforehand.

We could however use the Simple FEuler Method to approximate the value
at the middle of the step interval, say

h
Tq =Ty + 3 (20)

leading to
y_a = y_0 + h/2.d0*y’ (x_0)

and with this expression we can now evaluate the derivative at the midpoint
f(za,ya) and now use this as a refined approximation of the derivative over the
entire interval.

While Euler’s Simple Method corresponds to drawing a straight line with
derivative f(xg,yo) through the point (z9,yo) the Runge-Kutta (Modified Euler
Method) puts a line through (zg,yo) but with approximately the derivative at
the midpoint of the interval.

The code below shows the adaptation for performing the Runge-Kutta Method
of 2nd order for our example problem.

ys_prime = fun(xs,ys)

xs + h/2.40
ys + h/2.d0*ys_prime

Xa
ya

ya_prime = fun(xa,ya)

xf
yf

Xxs +h
ys + h*ya_prime
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Note how we basically perform Euler twice, but as shown in the figure below,
we have better results that with the simple Euler. With the same sampling h,
the RK of 2nd order has a significant improvement compared to Euler. The
results are slightly better than those obtained using h = 0.05 and Euler, and
less number of calculations have been carried out.

Therefore the Modified Euler Method as well as the Improved Euler Method
(not described here) both agree with the Taylor series through terms involving
h? and are said to be second-order Runga-Kutta methods.

5 4th order Runge-Kutta

An even better algorithm (one that is widely used in numerical analysis in
science) is the 4th order Runge-Kutta. It is fourth order meaning that the error
per step is on the order of h®, while the total accumulated error has order h?.

The algorithm is based on a weighted average of various slope estimates.
Thus, the next value y,,+1 is determined by the present value y,, plus the product
of the size of the interval (h) and an estimated slope. The slope is a weighted
average of slopes

e [y is the slope at the beginning of the interval;

e ks is the slope at the midpoint of the interval, using slope k; to determine
the value of y at the point x¢ + h/2 using Euler’s method



e k3 is again the slope at the midpoint, but now using the slope ks to
determine the y-value;

e k4 is the slope at the end of the interval, with its y-value determined using
k3.

In averaging the four slopes, greater weight is given to the slopes at the midpoint:

1
ﬂope:: 6(k1%*2k24*2k34*k4)

Here is my F90 version of the 4th order Runge-Kutta.

subroutine rk4(fun,xs,ys,xf,yf,h)

Subroutine using the 4th order Runge-Kutta algorithm
to progress the solution of a 1st order differential
equation of the form

dy/dx = f(x,y)

for the starting point xs to the point xf = xs + h.

INPUT

XS starting point

ys y(xs)

h step to perform progression
OUTPUT

xf end point

yE yf = y(xf), the value at point xf

>k >k >k K 3K 3K 3k 3k 5k 5k 3k 3k 5k >k >k %k %k %k >k 3k 3k 5k 5k %k %k %k %k >k %k % %

implicit none

real(8), intent(in) :: xs, ys, h
real(8), intent(out) :: xf, yf

real(8) :: fun
Middle steps

real(8) :: xa, xb, xc, ya, yb, yc
real(8) :: ys_prime, ya_prime, yb_prime, yc_prime
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ys_prime = fun(xs,ys)

! First step
xa = xs + h/2.d0
ya = ys + h/2.d0 * ys_prime

ya_prime = fun(xa,ya)
! Second step

xb
yb

xs + h/2.40
ys + h/2.d0 * ya_prime

yb_prime = fun(xb,yb)

! Third step
Xc =xs8s +h
yc = ys + h *x yb_prime

yc_prime = fun(xc,yc)
! Fourth step
xf =xs +h
yf = ys + h/6.d40 * &
(ys_prime + 2.d0xya_prime + 2.d0xyb_prime + yc_prime)

return

end subroutine rk4

6 Coupled ODEs

A second order Runge-Kutta subroutine for coupled first-order differential equa-
tions.

subroutine crk2(f1,f2,xs,yls,y2s,xf,ylf,y2f,h)

1
! Subroutine using the 2nd order Runge-Kutta algorithm
! to progress the solution of a pair of coupled 1st

! order differential equations of the form

!

10



! dyl/dx
! dy2/dx

! for the starting point xs to the point xf

!

!

!

1

1

! INPUT

! Xs
! yis
! y2s
! h

!

! OUTPUT

! xf
! y1f
! y2f
1
!

¥ 3k 5k ok ok ok ok 5k %k >k >k %k >k >k ok ok 3k 5k ok 5k 5k %k %k %k %k >k %k %k >k >k >k >k >k %k %k

f1(x,yl,y2)
f2(x,y1,y2)

starting point
y1(xs)
y2(xs)

step to perform progression

end point

Xxs + h.

y1f = y1(xf), the value at point xf
y2f = y2(xf), the value at point xf

implicit none

real(8), intent(in)
real(8), intent(out)

real(8)

0 f1, 2

! Middle steps

real(8)
real(8)

: xa, yla, y2a
:: yls_prime, yla_prime, y2s_prime,

i1 xs, yls, y2s, h
i xf, yif,y2f
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yls_prime
y2s_prime

f1(xs,yls,y2s)
f2(xs,yls,y2s)

xa = xs + h/2.d0

yla = ylis
y2a = y2s
yla_prime

y2a_prime

xf = xs +
ylf = yis
y2f = y2s

+
+

h/2.d0*yls_prime
h/2.d0*y2s_prime

f1(xa,yla,y2a)
f2(xa,yla,y2a)

hxyla_prime
h*y2a_prime

11

y2a_prime



return

end subroutine crk2

Note that we are simply using the RK2 methodology twice, once for every
differential equation. This is valid for linear differential equations.

7 Second order ODEs

Until now we always managed to get solutions to our differential equations. But
so far we mainly were concerned with first-order equations of the form

Y = f(z,y) (21)

In physics second-order differential equations are more common. Therefore we
need to start dealing with equations of the form:

y' = flx,y,9) (22)

At first sight this seems to be an entirely new class of problems. But it is
possible to reduce this problem to a more familiar form.
Let us introduce two new variables

Y1 =1y (23)

and

Y2 =y (24)
We may thus write the original second-order differential equation as a set of two
first-order equations,

Y1 = Y (25)
?/2 = f(z,y1,92) (26)

Another way to look at the previous equations is to envision them as vector
quantities. We could introduce two more variables,

1= and f2= f(z,91,92) (27)

we further obtain
4 = Y2 _| 1

HERi )
y = f (30)

Thus the problem is not so much different than what we have seen so far. It
just has more components.

12



Instead of stepping our one solution along we need to modify the existing
Runge-Kutta or Euler codes so that it steps our two components along.

One possible required modifications will consist of replacing scalar quantities
with arrays, but it is easier to just do the calculations twice, similar to the
coupled ODEs Runge Kutta method used in our previous Homework.

The independent variable x will remain a scalar, but the dependent variables
Y, 9, fO, f1,--- will all become arrays.

Let us try to solve a simple example using an adaptation of the Coupled
Runge-Kutta code displayed above. Let us the notation

i = »
fo = f(%ylayz)

where fy represents the second-order differential equation, which we know. f;
is not know instead, and we use the value of the derivative fs from the previous
step. Do not try to calculate fi; by integration. In some cases this is easy, but
we are using computer just because we can’t really solve al ODEs, right?

So, our first variation of crk2 is

yls_prime = y2s
y2s_prime = f2(xs,yls,y2s)

where £2 and xs, yls, y2s are known.They represent the initial conditions.
Now, we estimate the values at the middle step just as rk2 does.

xa = xs + h/2.40
yla = yls + h/2.d0*yls_prime
y2a = y2s + h/2.d0*y2s_prime

and use this values to get the derivatives at the middle point h/2.

yla_prime = y2a
y2a_prime = f2(xa,yla,y2a)

Note that again for the derivative for £1 we use the value y2 at the middle
point. You can easily continue this process to get the 2nd order Runge-Kutta
and even the 4th order RK.

7.1 Example 1

We want to solve the following problem

with boundary conditions

13



Note that since we have a seond-order ODE, we need TWO boundary conditions
to obtain a unique solution. We know the solution to this problem, namely,

y = cos(2x) (32)
I define

i = »
fo = flz,y1,92) = —4y

and use the starting conditions

xs = 0.d0
yls = 1.d0
y2s = 0.d0

and loop over x by calling the subroutine called drk2,

do i=1, N-1
call drk2(f2,xs(i),yls(i),y2s(i), &
xf (i+1) ,y1£ (i+1),y2f (i+1),h)
enddo

Note that I only need to have the external function £2, since £1 is not known
and not needed. Also, as an added bonus, the method provides as an output the
estimates of y'(z) as well as the requested y(z). Below, I plot the comparison
of the analytical and numerical solution. On the left, the solution of the 2nd
order ODE and on the right, the added bonus, the values of y'(z). Note the
boundary conditions are correct.

0.5
0.0F

—o.51

8 Two-point boundary problems
Here the two boundary conditions are not at the same point, typically they are

two values of y, given at different values of x. So, our boundary conditions are
Yy =1y, at t =a and y = yp at x = b. What do we do then?

14



‘We need to pick one of these two values of x, say x = a, use the one boundary
condition there, that y = y, there, together with a guess at 3’ there. Using this
guess we integrate the equation to obtain the resulting value of y = y;, at =z = b.
This will not equal y;, so we need to vary our guess at ¢y’ at x = a until we get
y = yp at x = b. This varying one number, 3’ at x = a, to make a function
y(x = b) — yp zero is what is known as root finding.

Thus we will make a short digression to consider root finding before we tackle
solving a second-order equation with two-point boundary conditions.

8.1 Root finding and Newton-Raphson method

To get us started let us consider the simple algebraic equation y = 22 — 2. We
want to know the values of x for which y = 0, i.e., the roots of 22 —2 = 0. There
are two roots of course = ++/2. If we consider only positive values of z, then
we have only one root z = V2.

The Newton-Raphson method takes advantage of the derivative of the func-
tion. The tangent of the curve is constructed at each succesive value of z,
and the next value x,4; taken as the point at which the tangent cuts the axis
f(z) =0.

If the nth value is z,, the tangent to the curve of f(z) at that point has
slope f’(z) and passes through the point = x,, y = f(x,). Its equation is
thus

y(@) = (2 — 2a)f (20) + F (@) (33)

The value at « at which y = 0 is then taken as x,1, so solving for x,, 1 leaves
us with

Tnt1 =T F(@n) (34)
and this is the Newton-Raphson iteration formula.
For our example above we have
y(z) =22 -2 (35)
and
y'(z) = 2x (36)

Let’s start with a guess of our result, say 1 = 1.0. The table below shows the
steps taken by just following our Newton-Raphson formulae.

15



Table 1: default

/

T y Yy
1.0000000 -1.0000000 | 2-0000000
1.5000000 0.25000000 | 3.0000000
1.4166666 | 6.94441795E-03 | 2.8333333
1.4142157 | 5.96046448E-06 | 2.8284314
1.4142135 | -1.19209290E-07 | 2.8284271
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