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Confidence intervals for earthquake source parameters
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S U M M A R Y
We develop a method to obtain confidence intervals of earthquake source parameters, such
as stress drop, seismic moment and corner frequency, from single station measurements. We
use the idea of jackknife variance combined with a multitaper spectrum estimation to obtain
the confidence regions. The approximately independent spectral estimates provide an ideal
case to perform jackknife analysis. Given the particular properties of the problem to solve
for source parameters, including high dynamic range, non-negativity, non-linearity, etc., a log
transformation is necessary before performing the jackknife analysis. We use a Student’s t
distribution after transformation to obtain accurate confidence intervals. Even without the dis-
tribution assumption, we can generate typical standard deviation confidence regions. We apply
this approach to four earthquakes recorded at 1.5 and 2.9 km depth at Cajon Pass, California.
It is necessary to propagate the errors from all unknowns to obtain reliable confidence regions.
From the example, it is shown that a 50 per cent error in stress drop is not unrealistic, and even
higher errors are expected if velocity structure and location errors are present. An extension
to multiple station measurement is discussed.
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1 I N T RO D U C T I O N

There is a long-standing controversy on whether stress drop in-
creases with earthquake magnitude or remains constant over a
wide range of earthquake sizes (Aki 1967; Archuleta et al. 1982;
Kanamori et al. 1993; Abercrombie 1995; Mayeda & Walter 1996;
Ide & Beroza 2001). The behaviour of source parameters including
stress drop, corner frequency, radiated seismic energy and appar-
ent stress are of key importance in understanding the physics of
earthquakes. However, it is difficult to estimate stress drop reliably
from seismograms since it is dependent on the cube of the corner
frequency fc and in turn, fc is dependent on an accurate account
of seismic attenuation, path effects, etc. These factors lead to con-
siderable uncertainty in estimates of stress drop and other source
parameters.

Abercrombie (1995) used records from a 2.5 km deep borehole in
Cajon Pass and showed that the data supported a constant stress drop,
but also an increasing apparent stress with earthquake magnitude.
Also from deep borehole data, Prejean & Ellsworth (2001) reported a
similar result. A magnitude dependency has been supported by some
studies (e.g. Kanamori et al. 1993; Mayeda & Walter 1996; Mori
et al. 2003), while other studies have suggested scale independence
(e.g. McGarr 1999; Ide & Beroza 2001; Ide et al. 2003), finding no
evidence of increasing stress drop or apparent stress with magnitude.

More recently Abercrombie & Rice (2005) revisited some of the
Cajon Pass seismograms and using both spectral fitting and Empir-
ical Green’s Functions (EGF) concluded that both apparent stress

and stress drop may increase with increasing earthquake size, but
noted that the uncertainties were still large and scale independence
could not be entirely discarded.

So, what are the uncertainties of the estimated source parame-
ters? Error analysis for source parameters has been attempted before
(e.g. Archuleta et al. 1982; Fletcher et al. 1984) but seems to have
been neglected more recently. Recently Prieto et al. (2006, in press)
developed an approach to obtain uncertainties in earthquake source
spectral using EGF and applied it to obtain confidence intervals of
radiated seismic energy. As pointed out by Tukey (1960):

‘Probably the greatest ultimate importance, among all types of statisti-
cal procedures we now know, belongs to confidence procedures which, by
making interval estimates, attempt to reach as strong conclusions as are rea-
sonable by pointing out, not single likely values, but rather whole classes
(intervals, regions, etc.) of possible values, so chosen that there can be high
confidence that the ‘true’ value is somewhere among them. Such procedures
are clearly quantitative conclusion procedures.’

In this paper, we use the idea of the jackknife variance (Tukey
1958) and follow a similar recipe to the one applied for spectra
(Vernon 1989; Thomson & Chave 1991) to construct confidence
intervals for earthquake source parameters. This is applied to single
station seismograms but can easily be extended to multiple station
and spectral ratios and EGF techniques. The confidence intervals
are of paramount importance to obtain meaningful scaling relations
when different studies, regions, etc. are compared.

We present an example from data recorded at the Cajon Pass
Borehole Experiment Phase II with some records also used in
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Table 1. Hypocentral parameters for the earthquakes recorded at Cajon Pass used in this study. The relocations by Shearer et al. (2005), model SHLK 1.02,
are given for SCSN earthquakes.

ID Year Month Day Hour Min Seconds Latitude (◦) Longitude (◦) Depth (km) ML Dist (km) CuspID

01 1994 01 01 14 56 42.087 34.2139 −117.4194 14.98 1.1 12.37 3138796
02 1994 01 01 17 47 31.257 34.3863 −117.0185 11.04 3.5 42.86 3138805
03 1994 08 22 21 27 51.366 34.3522 −117.6339 11.03 2.3 14.98 3181641
04 1994 09 21 04 16 51.762 34.2316 −117.4623 13.63 2.3 9.32 3185485

ML is the local magnitude given by the SHLK catalogue, Dist is the hypocentral distance from the borehole station, CuspID is the SCSN ID for the
earthquakes.
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Figure 1. Map showing the Cajon Pass Borehole location and relocated
earthquakes considered in this study. Relocations from Shearer et al. (2005)
model SHLK 1.02.

Abercrombie (1997) and show the resultant confidence intervals
for stress drop and other source parameters for four small earth-
quakes (Table 1) that were also recorded by the Southern California
Seismic Network (SCSN). Fig. 1 shows a map with the relocated
earthquakes and the borehole location.

2 T H E JA C K K N I F E M E T H O D

The jackknife was first introduced by Quenouille (1949) and then
named and extended by Tukey (1958) to estimate variances. It is
one of many resampling methods used for statistical inference. One
of the great advantages of the jackknife is that one does not need to
know the statistical distribution of the parameter in question and that
it works on complicated processes reliably (a detailed proof is given
in Reeds 1978). In this paper, we will use the so-called delete-one
jackknife, which we will refer to simply as the jackknife. A good
review can be found in Miller (1974) and Efron (1982).

Assume X 1, X 2, . . . , XK are K independent random observations
taken from an unknown probability distribution characterized by a
parameter θ which is to be estimated. The estimate of θ using all
observations is:

θ̂ = θ̂ [X1, X2, . . . , X K ] (1)

Let

θ̂�ı = θ̂ [X1, . . . , Xi−1, Xi+1, . . . , X K ] (2)

be the delete-one estimate of θ , where the ith observation Xi is not
used to estimate θ̂ �ı . The data are thus subdivided in K groups of
size (K − 1) by deleting each entry in turn.

An important application of the jackknife was suggested by Tukey
(1958), and is the jackknife estimate of the variance of θ̂

var{θ̂} = K − 1

K

K∑
i=1

[
θ̂�ı − θ̂�·

]2
, (3)

where

θ̂�· = 1

K

K∑
i=1

θ̂�ı (4)

is the mean of the delete-one estimates (2). Although it has been pro-
posed (Wu, 1986) that deleting an arbitrary number of observations
might have better convergence properties, we use throughout the
paper the delete-one jackknife because of its simplicity, efficiency
and independence of an arbitrary chosen subdivision for the groups.

As suggested by Miller (1974) and applied in spectrum estima-
tion (Vernon 1989; Thomson & Chave 1991) it is sometimes neces-
sary to use a transformation that stabilizes the variance, especially
when the statistic being investigated is bounded or its distribution
is strongly non-Gaussian. This can be important when estimating
errors in stress drop �τ , seismic moment M 0, and corner frequency
fc, all with a range [0, ∞).

2.1 Jackknife in regression problems

Consider the regression problem for a basic model

Y = Aβ + e, (5)

where Y, e are m sized vectors of the data and the errors, A is a m ×
p matrix from the model, and β is a p size vector of the parameters
we wish to find.

Miller (1974) examined the traditional jackknife approach by
deleting rows of both Y and A simultaneously and showed the
asymptotic normality of the jackknife solution vector and its vari-
ance under general conditions. The delete-one estimate is given by
solving

Y�ı = A�ı β̂�ı , (6)

where Y�ı and A�ı have the ith row removed. As will be clear in
the subsequent sections, the problem to solve for source parameters
is non-linear and the model (5) is not appropriate. Instead we have

yi = gi (β) + eI , (7)

where gi is a non-linear smooth function of the parameters in β

(Fox et al. 1980; Wu 1986). In an analogous way, we want to obtain
the delete-one estimates β̂�ı that satisfy (7) by means of one of
many non-linear parameter estimation techniques (non-linear least-
squares, grid search, etc).

3 M U LT I TA P E R S P E C T RU M
E S T I M AT E S

The multitaper spectrum algorithm was introduced by Thomson
(1982) and has been widely used in the geophysical commu-
nity (e.g. Park et al. 1987; Vernon 1989; Chappellaz et al. 1990;
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Abercrombie 1995; Lees & Park 1995). The method takes advan-
tage of a family of orthogonal tapers which are resistant to spectral
leakage.

Given a time-series x(t) with N contiguous data samples and
assuming unit sampling, we multiply the time-series by a sequence
a(t) called a taper and apply a DFT

y( f ) =
N−1∑
t=0

x(t)a(t)e−2π i f t with
N−1∑
t=0

|a(t)|2 = 1 (8)

to obtain a direct estimate of the true spectrum S(f ) of the signal

Ŝ( f ) = |y( f )|2. (9)

The question is then what taper to use? Is there a reason to prefer
one taper over the other?

Spectral leakage is the bias introduced by energy leaking from
frequencies different from the frequency f for S(f ). Now the question
becomes: what taper a(t) has the greatest concentration of energy in
its Fourier transform? Spectral properties of the taper can be studied
from its DFT

A( f ) =
N−1∑
t=0

a(t)e−2π i f t . (10)

The function |A(f )| for conventional tapers has a broad main lobe
and a succession of smaller sidelobes. The larger the sidelobes, the
more spectral leakage is biasing Ŝ( f ).

We can express the estimate in eq. (9) as a convolution of the taper
transform (10) and the true spectrum S(f ) (see Thomson 1982; Park
et al. 1987, for derivation):

Ŝ( f ) =
∫ 1/2

−1/2
|A( f − f ′)|2 S( f ′) d f ′. (11)

The interpretation of this equation is as a convolution describing
the smearing of the true spectrum as a consequence of the discrete
sampling. A good taper will have a spectral window with low am-
plitudes whenever |f − f ′| gets large and large amplitudes whenever
|f − f ′| is small.

Slepian (1978) suggested choosing a frequency W , where 0 <

|W | ≤ 1/2 (unit sampling) and maximizing the fraction of energy
of A at frequencies from (−W , W ). In mathematical form this is
equivalent to:

λ(N , W ) =

∫ W

−W
|A( f )|2 d f∫ 1/2

−1/2
|A( f )|2 d f

. (12)

Since no finite time-series can be completely band-limited, λ < 1.
The spectral leakage comes from the sidelobes of A(f ) convolved
with the spectrum outside the band (f − W , f + W ). One can think
of λ(N , W ) as the amount of spectral energy at Ŝ( f ) that comes
from (f − W , f + W ) and 1 − λ as the amount that comes from
outside the band or as the bias from outside the band.

We wish to maximize the value of λ by choosing A(f ) appropri-
ately. Substitute (10) into (12) and represent a(t) by an N-vector of
coefficients a; taking the gradient of λ with respect to a and setting
to zero leads to the matrix eigenvalue problem:

D · a − λa = 0, (13)

where D is a symmetric matrix

D(t, t ′) = sin 2πW (t − t ′)
π (t − t ′)

(14)

with eigenvalues 1>λ0 >λ1 >. . .>λN−1 >0 and associated eigen-
vectors vk(t;N , W ) called the Slepian sequences (Slepian 1978).
From now on we will drop the explicit dependence on N and W .

The eigenvector with the largest eigenvalue is the best possible
taper for the suppression of spectral leakage, and in practice we find
λ0 is usually extraordinarily close to one. However, in fact it can be
proved that the first 2NW − 1 eigenvalues are also very close to one,
leading to a whole family of excellent tapers. The multitaper method
exploits this fact by using all of these tapers rather than merely the
first one. Because the eigentapers are orthogonal (both in time and
frequency domains), the estimates based on them are statistically
independent of each other and can, therefore, be combined together
to yield a more reliable overall estimate as we will explain.

In practice, we choose a bandwidth W over which the spectrum is
to be smoothed, thus fixing NW , which is called the time-bandwidth
product of the system under study. For practical problems we always
choose NW > 1, because we cannot expect to obtain good concen-
tration into a frequency band narrower than fR = 1/N , the Rayleigh
resolution.

Fig. 2 shows the Slepian sequences and their Fourier transforms
with corresponding eigenvalues for a time-series with N = 100
samples, NW = 4, and W = 0.04 for unit sampling. The hori-
zontal axis is shown in Rayleigh units, basically equivalent to the
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Figure 2. The five lowest order 4π Slepian tapers (top panel) and corre-
sponding Fourier transform amplitudes (lower panel). Solid lines correspond
to the zero-order sequence v0(t), higher-order tapers are plotted with dashed
lines. We have used N = 100 and NW = 4. Estimated eigenvalues are also
provided.
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frequency sampling. Fig. 2 suggests that NW = 4 is equivalent to
saying that the smoothing will take place over NW Rayleigh bins
around the frequency of interest. Note that here we have assumed
unit sampling—if that is not the case, then the time-bandwidth prod-
uct is actually �tNW = 4, where �t is the sampling rate, in order
to maintain the proper units of W .

Turning back to the spectral estimation problem, given a particular
bandwidth W , we compute DFTs of the tapered data yk(f ), called
the raw eigencoefficients,

yk( f ) =
N−1∑
t=0

x(t)vk(t)e−2π i f t . (15)

We generally use k = 1, . . . , K, where K = 2NW − 1. As expressed
above, the corresponding eigenvalues are λk ≈ 1 with good leakage
properties.

As suggested by Thomson (1982) we use the adaptive weighting
procedure

x̂ k( f ) = dk( f )yk( f ) (16)

and the corresponding adaptive spectral estimate

Ŝ( f ) =

K−1∑
k=0

|xk( f )|2

K−1∑
k=0

|dk( f )|2
, (17)

where the weights dk(f ) are chosen to reduce bias from spectral
leakage. The frequency dependent weights are useful in the anal-
ysis of high dynamic range spectral processes. The weights work
as follows. At frequencies where the spectrum is reasonably flat,
the weights dk( f ) ≈ 1, thus reducing the variance of the spectral
estimate by averaging over all the eigencoefficients yk . At frequen-
cies where the spectrum has a large dynamic range the higher-order
eigencoefficients might be biased and the weights reduce the con-
tributions from these eigencoefficients.

The optimal weights dk(f ) can be found by minimizing the misfit
between the estimated spectrum and the true spectrum S(f ). The
approximate optimum weights are

dk( f ) ≈
√

λk S( f )

λk S( f ) + (1 − λk)σ 2
, (18)

where σ 2 represents the variance of the time-series. The term (1 −
λk)σ 2 represents an approximation to the bias from spectral leakage.
Since we do not know the true spectrum, we replace S(f ) by an
estimate Ŝ( f ).

We find the weights and estimated spectrum Ŝ( f ) by iteration. As
an initial estimate of S(f ) we take the arithmetic average of the first
two squared eigencoefficients |y0(f )|2 and |y1(f )|2 and substitute
in (18) to obtain estimates of dk(f ). The weights are then used in
(16–17) to obtain a new spectral estimate Ŝ( f ) and this process is
repeated. Convergence is rapid and only a few cycles are necessary.
Note that both the tapers and weights are normalized in order to
keep the spectrum in physical units.

The kth eigenspectrum is

Ŝk( f ) = |x̂ k( f )|2. (19)

For the jackknife approach, we will use the Ŝk as the K indepen-
dent estimates of the spectrum. At each frequency f the multitaper
estimate of the log spectrum is given by

ln Ŝ = ln

[
1

K

K∑
k=1

Ŝk

]
(20)

and we also define the delete-one spectrum

ln Ŝ�ı = ln

[
1

K − 1

K∑
k=1,k �=i

Ŝk

]
. (21)

The logarithmic transformation of the spectrum is suggested in
Thomson & Chave (1991), providing a more symmetric distribu-
tion than the standard χ 2 for spectral estimates.

4 S O U RC E PA R A M E T E R JA C K K N I F E

A general source model of the displacement spectra of both P and
S waves (e.g. Abercrombie 1995) is:

u( f ) = 
0 e−(π f t/Q)[
1 + ( f/ fc)nγ

]1/γ
, (22)

where 
0 is the long period amplitude, f is the frequency, fc is the
corner frequency, n the high frequency fall-off rate, γ is a constant,
t is the traveltime, and Q a frequency independent quality factor.
Modified versions of spectral shapes proposed by Brune (1970)
and Boatwright (1980) can be obtained by changing γ . Based on
previous studies of data from the Cajon Pass Borehole (Abercrombie
1995, 1997) a value γ = 2 and a variable fall-off n fits the spectra
reasonably well. In this paper, we will use

u( f ) = 
0 e−(π f t/Q)[
1 + ( f/ fc)2n

]0.5 . (23)

Following Ide et al. (2003) take the logarithm

ln u( f ) = g( f ; β) (24)

= ln 
0 − 0.5 ln
(
1 + ( f/ fc)2n

) − π f t

Q
, (25)

where β is a vector of three components given by the parameters we
are searching for, namely 
0, fc, Q. The function g(f , β) is clearly
non-linear and some kind of non-linear inversion is necessary. It
is not the aim of this paper to discuss the difficulties encountered
in solving this problem, and we suggest reading Bard (1974) on
non-linear parameter estimation, as applied to source physics (see
Abercrombie 1995; Ide et al. 2003, and references therein).

The estimate β̂ of β using all observations (as in eq. 1) is given
by the solution of (24) using the multitaper spectrum estimate (20).
The delete-one β̂�ı parameter instead uses the delete-one spectrum
(21). The result is K delete-one estimates of the long period am-
plitude, corner frequency and quality factor, denoted, respectively,

0,�ı , fc,�ı , Q�ı .

4.1 Transformations

The use of transformations before performing the jackknife is in
some cases necessary. In terms of source parameters a logarithmic
transformation should provide more stable estimates of variance.
Some reasons for this are as follows:

(i) The three seismic parameters are non-negative. If a simple
Gaussian distribution is assumed, the tails give a non-zero probabil-
ity that a parameter is negative, which is not physical. The jackknife
does not constrain variances to be positive.

(ii) As suggested by (Archuleta et al. 1982), if no transformation
is performed, the arithmetical average will be biased to the larger
values, while taking a transformed parameter gives equal weight to
all independent estimates.
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(iii) A closer to normal distribution of the errors is achieved by
such a transformation.

In this respect, we will perform the jackknife on θ = ln 
0 rather
than 
0.

4.2 Confidence intervals

As a result of Section 4.1 we obtain an estimate θ̂ = ln β̂ and the
variance of the transformed variable

σ̃ 2 = var{ln β̂} (26)

= K − 1

K

K∑
i=1

[ln β̂�ı − ln β̂�· ]
2
, (27)

where β̂�ı is any one of 
̂0,�ı , ˆf c,�ı , and Q̂�ı .
Tukey (1958) suggested that (ln β̂�ı − ln β̂�· )/σ̃ is nearly dis-

tributed as Student’s t with K − 1 degrees of freedom for small
samples. Hinkley (1977) on the other hand stated that if the data
have strongly non-normal distributions, the Student’s t approxima-
tion can lead to substantial errors. However, if the transformation
performed leads to more nearly normal distributions, the approxi-
mation is reasonably accurate (Davison & Hinkley 1997). Note that
this distribution is very close to the Gaussian distribution and for 30
or more degrees of freedom they are almost indistinguishable. With
this in mind, the double-sided 1 − α confidence interval of the long
period amplitude is


̂0 e−tK−1(1−α/2)σ̃ < 
̂0 ≤ 
̂0 etK−1(1−α/2)σ̃ (28)

and similar for ˆf c and Q̂. If the Student’s t approximation is not ap-
propriate for the particular data, one can always simply plot the ±σ̃

bounds by adjusting (28). Note that because of the transformation,
the lower limit is never negative.

4.3 Seismic moment, source radius and stress drop

Other important source parameters estimated from the spectrum are
the seismic moment (M 0), the source radius (r) and the stress drop
(�τ ) and are often calculated assuming a circular fault (Brune 1970;
Madariaga 1976), in which case

M0 = 4πρc3 R
̂0

Uθφ

, (29)

r = kβ
ˆf c

, (30)

where a constant rupture velocity is assumed. From the mean esti-
mates of the previous two equations,

�τ = 7M0

16r 3
(31)

where ρ, c, R, U θφ , β are density, wave velocity, hypocentral dis-
tance, the mean radiation pattern (0.52 and 0.63 for P and S waves)
and the shear wave velocity at the source. k is 0.32 and 0.21 for
P and S waves, respectively, assuming the rupture velocity is 0.9β

(Madariaga 1976).
We will assume that the parameters not associated with the source

(shear wave speed, density, etc.) are known exactly, that is, do not
contribute to the uncertainties of seismic moment, source radius and
stress drop. We will use the idea of propagation of errors (Taylor
1997) to obtain confidence limits of these parameters.

We perform the propagation of errors in the log domain, since
it is where we have variance estimates of ln 
0 and ln fc, denoted,
respectively, σ 2


0
and σ 2

fc
. The idea is to obtain the variance of seismic

moment σ 2
M0

= var{ln M0}, source radius σ 2
r = var{ln r}, and stress

drop σ 2
�τ = var{ln �τ}. After this, eq. (28) can be used to obtain

confidence intervals. Some rules of propagation of errors are shown
in Appendix A.

The relation of errors between the source and spectral parameters
are

σ 2
M0

= σ 2

0

(32)

σ 2
r = σ 2

fc
(33)

and a more complicated relation is obtained for the stress drop, since
it depends on two variables

σ 2
�τ = σ 2

M0
+ 9 σ 2

r

= σ 2

0

+ 9 σ 2
fc
, (34)

where it is assumed that the covariance of 
0 and fc is negligible.
This relation was used by Fletcher et al. (1984) to estimate uncer-
tainties of stress drop using a multiplicative error. Again, the bounds
(either ±σ or confidence intervals using the Student’s t approxima-
tion) can be transformed back to the linear domain using (28).

5 A P P L I C AT I O N T O C A J O N PA S S DATA

Because attenuation can also cause fall-off at high-frequencies it
is important to correct observed spectra for Q effects. Full con-
sideration of these effects is beyond our focus here, therefore, as
a demonstration of the jackknife procedure to obtain variance and
confidence intervals we choose seismograms recorded at two dif-
ferent depths (1.5 and 2.9 km) at the Cajon Pass Borehole, where
attenuation effects are relatively small and have been previously
modelled by Abercrombie (1995). The seismometers that recorded
this data set are 10-Hz L-15LA high temperature geophones, with
sample rates of 1000 samples s−1.

Fig. 3 shows displacement seismograms recorded at the 2.9 km
depth sensor for a ML3.5 earthquake 43 km away (ID 02 in Table 1).
The spectrum is computed for a 1 s window, starting 0.15 s before
the P pick at the station, similar to windows used in previous work
(e.g. Abercrombie 1995; Prieto et al. 2004; Abercrombie & Rice
2005) for small earthquakes.
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Figure 3. Example seismogram of the largest event used in this study, ML3.5
recorded at the deepest borehole sensor 2.9 km. Seismograms have been
corrected for instrument response and are flat to displacement between 2
and 300 Hz. Horizontal bars show the choice of noise and P-wave window.
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Figure 4. The delete-one spectrum for the ML 3.5 earthquake, from signal
in Fig. 3 at the 2.9 km sensor. The spectra have been shifted for comparison
purposes. All spectra show a similar behaviour and slight differences are
seen. For each spectrum, the delete-one corner frequency estimates are listed.

For each of the three components (Z, H1 and H2) we estimate
the amplitude spectrum using a time-bandwidth product NW = 4
and work with K = 7 tapers. This means we also compute for each
component 7 delete-one spectra as in eq. (21). The final amplitude
spectrum is then computed by vector summation of the three com-
ponent spectra, and similarly for the delete-one spectra.

Fig. 4 shows the complete set of delete-one spectra for the ML3.5
earthquake recorded at the 2.9 km sensor. The spectra have been
shifted for comparison. In general the spectral shapes are very simi-
lar and only slight differences at very low frequencies and roughness
at higher frequencies are visible. Note that in Fig. 4 the delete-one
spectra are plotted, which are not independent estimates. Only Ŝk( f )
are treated as independent, given the orthogonality properties of the
Slepian tapers.

Here, we have a good example of the properties of the multitaper
algorithm. The data from the Cajon Pass have a very strong 60 Hz
signal. In this work, we have N = 1000 samples, dt = 0.001, we
chose NW = 4, the band W = 4 Hz and we use K = 7 tapers. This
means that the 60 Hz peak will be smoothed over the band between
56 and 64 Hz. In Fig. 4, we can see a very sharp discontinuity at 64
Hz due to the fact that outside the band, very little energy is leaked
to frequencies f > 64 Hz.

Following Abercrombie (1995) and Abercrombie & Rice (2005)
we use Q = 1000 and correct the spectra before performing spectral
fitting. We vary the fitting bandwidth to obtain optimal fits, but the
same bandwidth is used for all delete-one spectra and the average
spectra. An example fit to the model (25) is shown in Fig. 5 for
the largest and smallest earthquake in this study. Note, however that
the 1.5 km sensor data are used for the small earthquake, due to
complicated resonances present at the 2.9 km sensor spectra that
may have affected the results.
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Figure 5. Spectral modeling of P waves for two different sized earthquakes.
The bandwidth used to fit the source model varies depending on event size.
An attenuation correction was previously performed, using Q = 1000 as
suggested by Abercrombie (1995).

As in Abercrombie & Rice (2005) we use density ρ =
2700 kg m−3, α = 6000 m s−1 and β = α/

√
3 and using eqs (29–31)

we estimate the source parameters M 0, fc, r , �τ from the average
spectra and the jackknife parameters (e.g. M0,�ı ) from the delete-
one spectra to get the jackknife variance and confidence intervals.
Table 2 shows the source parameters and 5–95 per cent confidence
limits. Fig. 6 shows plots of seismic moment and corner frequencies
and seismic moment and stress drop for the data used in this paper.

It is important to note the assumptions and unknowns in the cal-
culations. For example, we have assumed that the wave speeds (α,
β) are known exactly. If there are errors (and certainly there are)
associated with the wave speed, errors will propagate to M 0, r and
subsequently to the stress drop. Assuming a 5 per cent error in
the S-wave speed, thus affecting the radius uncertainties (and rup-
ture speed), the confidence region for the stress drop for the ML3.5
earthquake recorded at 2.9 km sensor would be (47, 108), a change
of about 10 per cent. Other sources of errors for this example include
the attenuation correction, the constant Q assumption used, earth-
quake location errors, radiation pattern and directivity, etc. Perhaps
most importantly, we assume the validity of the source model; our
method provides an estimate of the errors in �τ with respect to
random fluctuations in the data but is not a test of the validity of the
model itself.

5.1 Extension to multiple stations

A generalization of the jackknife to multiple stations is desirable.
A major source of uncertainty would be directivity, because as ex-
pected from directivity, the pulse width of the source time functions
is narrower in the direction of rupture and broader in the opposite
direction, also changing the corner frequency (e.g. McGuire 2004).

One approach is to treat the different station estimates of corner
frequencies fc and seismic moment M 0 as independent, and, after
suitable transformations, compute confidence intervals as explained
in Sections 2 and 4. If the earthquake source spectrum is simple (no
directivity effects, radiation pattern correctly accounted for, etc.) all
stations would return a similar estimate, thus having small uncer-
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Table 2. Source parameters and confidence intervals obtained by spectral fitting and jackknife analysis.

ID ML Sensor M 0 (Nm) M 0 conf fc (Hz) fc conf n r(m) �τ (MPa) �τ conf

01 1.1 1.5 0.96 e + 11 (0.78 1.17) e + 11 43.80 (33.29 57.63) 1.72 25 2.60 (1.11 6.07)
02 3.5 1.5 1.73 e + 14 (1.11 2.68) e + 14 6.92 (4.77 10.03) 1.72 160 18.34 (5.75 58.47)
02 3.5 2.9 1.72 e + 14 (1.35 2.19) e + 14 10.91 (9.91 12.00) 2.09 101 71.55 (52.78 96.98)
03 2.3 2.9 1.53 e + 12 (1.31 1.79) e + 12 20.74 (17.46 24.63) 1.77 53 4.55 (2.72 7.64)
04 2.3 2.9 1.36 e + 12 (1.00 1.85) e + 12 21.66 (18.74 25.02) 2.03 51 4.66 (2.90 7.50)

M 0 conf, fc conf and �τ conf are the 5–95 per cent confidence intervals for the seismic moment, corner frequency and stress drop, respectively. n is the
high-frequency fall-off for the P waves. Q = 1000 is assumed. The column named Sensor represents the depth in km of the sensor recording the earthquake.
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Figure 6. Source parameters determined in this study and 5–95 per cent
confidence intervals using a Student’s t approximation. Symbols with dot at
the centre have parameters determined at the 1.5 km deep sensor. Note that
the confidence regions may vary from event to event.

tainties, while if there is strong directivity, certain stations will have
considerably different corner frequencies, increasing uncertainties.
A recipe for a multiple station jackknife of fc is as follows:

(1) Compute fc for every station that recorded the earthquake.
(2) Use the log transformation.
(3) Compute a mean ln ˆf c (eq. 1).
(4) Compute delete-one ln ˆf c,�ı (eq. 2).
(5) Compute variance var{ln fc} = σ 2

fc
(eq. 3).

(6) Obtain confidence intervals (eq. 28).

A similar approach could be used for other parameters such as
long period amplitude 
0, Q, etc. Propagation of errors (eqs 32–
34) is necessary to obtain confidence intervals on seismic moment,
source radii and stress drop.

6 C O N C L U S I O N S

In estimating source parameters from the seismic spectrum, it is
important not only to obtain a measure of the source parameters but
also to obtain a measure of the uncertainties, by means of confidence
intervals. The jackknife is a reliable way of estimating the variance of
source parameters, and, given suitable transformations, confidence
intervals. It should be easy to extend this approach to multiple station
studies, where other sources of error include the radiation pattern and
directivity effects which might generate different corner frequencies
and radiated energy.

We calculate source parameters and confidence intervals for four
small earthquakes as an example of the use of the jackknife ap-

proach. The error analysis is necessary if the data are to be used
to constrain rupture models (Abercrombie & Rice 2005), examine
scaling relations and the size dependence of earthquake parameters,
in order to conclude, within a reasonable reliability, something about
the physics of earthquakes.

From Fig. 6 there appears to be a slight increase of stress drop
with earthquake magnitude, which, unless the errors are kept small,
would pass unnoticed. Note also that the larger uncertainties are
associated with the 1.5 km sensor, compared to at 2.9 km. If some
of the assumptions such as radiation pattern and earthquake loca-
tion contribute to the errors, the stress drop scaling would be less
apparent, suggesting the need to find ways of reducing uncertainties.

The M3.5 earthquake (ID02) was recorded at two different depths
and the corner frequency confidence regions barely overlap. This
variation is likely explained by other sources of error such as near
site effects at the shallower station. This also shows that even stations
close to each other may have very different estimates of source
parameters and uncertainties are needed to address the significance
of these estimates.
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A P P E N D I X A : P RO PA G AT I O N O F
E R RO R S

Some rules of propagation of errors (Taylor 1997) are listed here.
Assume u, v are random variables with associated variance σ 2

u, σ 2
v ,

and covariance σ 2
uv . Constants a, b do not contribute to uncertainties.

Then we have:

x = au ± bv σ 2x = a2σu2 + b2σ 2
v + 2abσ 2
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