
MWLIB

A Multitaper Spectrum Estimation Library

Germán Prieto

May 26, 2005

1 Introduction

The mwlib.a library is a Fortran 90 Library to estimate the spectra of time series
using Dave Thomson’s approach (Thomson, 1982), the multitaper spectrum
estimation technique. We are using here the adaptive multitaper approach,
although you can also get the average multitaper estimate as well as the simple
weigthed multitaper estimate.

This subroutine allows you to obtain the spectrum estimation as well as
all subproducts, such as a jackknife 95% confidence interval, the yk’s, which
contain the phase information, the weights of the different eigenspectra, and
also the tapers used (Slepian sequences) and correspondent eigenvalues (energy
concentration).

The basic subroutine that is used is mtspec.f95, which performs all the
calculations. Note that this estimate does not remove line components. The
basic way to call this subroutine is

call mtspec(npts,dt,x,tbp,kspec,nf,freq,spec)

A description of all the variables will follow later. The only part that the user
has to decide, is the time-bandwidth product tbp and the number of tapers to
use kspec.

If for example you would also like to have the jackknife error estimate, you
could ask for this optional argument when calling the subroutine

call mtspec(npts,dt,x,tbp,kspec,nf,freq,spec,err=jack)

which will return the appropriate jackknife estimate in the array jack, featuring
the 5% and the 95% confidence intervals. This feature of optional arguments is
available for Fortran 90 and is useful for subroutines which have many arguments
that aren’t always required.

2 Requirements

The first requirement is to have a Fortran 90 or 95 compiler available in your
machine. This library has been tested using the Absoft Compiler in a Mac

1

OS X system, and using the Sun Compiler in the Unix environment. Since we
are taking advantage of features in Fortran 90 such as optional arguments and
modules not available in F77, a F90/F95 compiler is needed. Most of the things
you can do in F77 can be compiled by F90, so there is no reason not to use F90
instead (of course this is a personal opinion).

A second requirement is that you have to edit the Makefile a little bit to
adjust to your specific compiler options. There are small differences between
compilers, especially the option to look for modules. You edit the Makefile to
be able to search the modules used by this library.

3 Compiling

There is a simple steps in compiling the library. You simply run the Makefile
script located in the /mtspec/ folder, to compile all the individual subroutines,
as well as compiling the spectra module. A library will be created as well as
two module files (the object files are removed).

mwlib.a
spectra.mod
gutil.mod

This is the easy part of compiling. Now you need to be able to use this library
in any of your programs. This part is very important for the correct use of this
library. The makefile for the Absoft compiler

Objects and Libraries

OBJS = $(path)/mtspec/mwlib.a

Module locations

MODS = $(path)/mtspec

Compiler

FC = f95

Compiler flags
none
FFLAGS =

Module flag
Absoft Compiler

MFLAG = -p
MODULE = $(MFLAG)$(MODS)

2

Compile

all : mw_test mt_test jk_test yk_back

%: %.f95 $(OBJS)
$(FC) $(FFLAGS) $(MODULE) $< $(OBJS) -o $@

Clean

clean :
rm mw_test mt_test jk_test yk_back

and the Sun compiler

Objects and Libraries

OBJS = $(path)/mtspec/mwlib.a

Module locations

MODS = $(path)/mtspec

Compiler

FC = f95

Compiler flags
none
FFLAGS =

Module flag
Sun Compiler

MFLAG = -M
MODULE = $(MFLAG)$(MODS)

Compile

all : mw_test mt_test jk_test yk_back

%: %.f95 $(OBJS)
$(FC) $(FFLAGS) $(MODULE) $< $(OBJS) -o $@

Clean

3

clean :
rm mw_test mt_test jk_test yk_back

Note how the modules are linked. Modules are linked during the compilation
separate from the libraries. This is compiler dependent. The Absoft compiler
uses -p, meaning path, to look for the modules. The Sun compiler uses -M
meaning modules and other possibilities such as -I or -i for the NAG compiler.
You have to find out what your compiler options are. The compiler searches the
modules in the directory where the program is running, and some predetermined
places, so if your module is not there, you need to use this module option. It is
a good idea to use this, since it reminds you what exactly you are using.

Finally you will need to use the module in your program. The way you
use a module in a program is simply to type use mod name before defining any
variables. So, as an example, we have

program test_mwlib

!
! This is a test program for the multitaper library
! mwlib.a

!**

use spectra

implicit none

real(8), dimension(npts) :: x

!**

...

end program test_mwlib

Be aware that the use of the module spectra.mod is absolutely necessary.
This allows the use of optional arguments, making the use of the library much
more friendly.

4 Basics

The mtspec subroutine is in charge of estimating the adaptive weigthed mul-
titaper spectrum, as in Thomson (1982). This is done by estimating the dpss
(discrete prolate spheroidal sequences), multiplying each of the kspec tapers

4

with the data series, take the fft, and using the adaptive scheme for a better
estimation.

As a by product of the spectrum (spec), all intermediate steps are estimated,
and can be called as optional variables. By products include the phase infor-
mation in yk, the eigenspectra sk, the simple weigthed mean spectra sbar, the
jackknife 95% confidence intervals err(nf,2), the degrees of freedom se and
the weigths wt(nf,kspec) used.

A new feature introduced to the library, is the capability to deal either with
single precision or double precision datasets. Still the internal code works in
double precision (needed basically by the prolate estimation part), but your
Input/Output is going to be single or double precision.

To get ahold of this values, simply call them in the subroutine. Note that
the order of calling this variables does matter. But if you want specific variables
from the subroutine you can specify them as we will see later.

The subroutine argument list is as follows

mtspec (npts,dt,x,tbp,kspec,nf,freq,spec, &
yk, wt, err, se, sk, sbar, vn, lambda, theta, &
xi, seavg)

where all variables are described in the next set of tables

Table 1: The input arguments (double and single precision)

Var Double Single Dimension Description
npts integer integer 1x1 number of points in time series
dt real(8) real(4) 1x1 the sampling interval
x real(8) real(4) npts x 1 the real time series

tbp real(8) real(4) 1x1 the time-bandwidth product
kspec integer integer 1x1 the number of tapers to use

nf integer integer 1x1 number freq. bins (npts/2 + 1)

Table 2: Standard output arguments

Var Double Single Dimension Description
freq real(8) real(4) nf x 1 the real frequency vector
spec real(8) real(4) nf x 1 the spectrum estimate

The variables from tables 1 and 2 are always required. The order this vari-
ables are set during the call of the subroutine is also required. All other variables
are optional, meaning that you are not needed to use them, neither you have to
define them in the main program.

5

Table 3: Optional output arguments

Var Double Single Dimension Description
yk complex(8) complex(4) npts x kspec the eigencoefficients
wt real(8) real(4) nf x kspec weights
err real(8) real(4) nf x 2 95% jackknife c.i.
se real(8) real(4) nf x 1 ndf for each freq bin
sk real(8) real(4) nf x kspec the eigenspectra (yk

2)
sbar real(8) real(4) nf x 1 the mean spectrum
vn real(8) real(4) npts x kspec the Slepian sequences

lambda real(8) real(4) kspec x 1 the eigenvalues of dpss
theta real(8) real(4) kspec x 1 1- eigenvalues of dpss

xi real(8) real(4) 1 x 1 the variance efficiency
seavg real(8) real(4) 1 x 1 stability (close to one)

Also, be aware that if your input variables are single precision, your output
is going to be accordingly assigned, internally by the library. This is all true,
except for the output of the prolate eigenvalues and eigenfunctions. The most
basic use of the library is

call mtspec(npts,dt,x,tbp,kspec,nf,freq,spec)

Be aware that the number of frequency points nf, has to be npts/2+1. This
means if the time series is 100 points long, the spectrum has 51 bins, and if the
time series is 101 points long, its spectrum is still 51 points long.

The output will then be a frequency vector freq(nf) containing all the
frequency bins, and the spectrum spec(nf) with the power spectrum of the
time series.

It might be that you don’t want to loose the phase information, or you might
want the error estimates. In previous Fortran codes you had to write all these
variable names and have them defined at the top of your program, leading to
too many unused variables running around.

With the optional arguments the subroutine can only output some of them,
without any specific order during the call of the subroutine. You can then get
the 95% confidence interval, without the need to call the yk’s as well. One
would type

call mtspec(npts,dt,x,tbp,kspec,nf,freq,spec,err=err)

where a third output is now available, err(nf,2). In your main program you
have to define this variable by

real(8), dimension(nf) :: spec, freq
real(8), dimension(nf,2) :: err
...

6

One can get as many of the optional variables as desired. An example can be

call mtspec(npts,dt,x,tbp,kspec,nf,freq,spec, &
err=err,yk=yk,wt=wt,xi=xi)

and we get the eigencoefficients, the jackknife estimate, the weights of the dif-
ferent eigenspectra and the variance efficiency.

5 Example

Here is a basic example of a single program using the multitaper library. Some
output figures are presented at the end of this documentation file. The plotting
is performed using the gplot subroutine, which allows simply plots to be drawn
from inside a fortran program.

program mw_test

! The program calls the eigenft subroutine to get the
! eigenspectra, as in Thomson (1982).

!********************
use spectra
use gplotxy

implicit none

! time series

integer :: npts
real(8), dimension(:), allocatable :: x, t

! spectra and frequency

integer :: nf

real(8), dimension(:), allocatable :: spec, freq
real(8), dimension(:), allocatable :: sbar
real(8), dimension(:,:), allocatable :: err

! Spectral parameters

integer :: kspec

real(8) :: tbp, dt

! Others

7

integer :: ios, i, k

character (len = 100) :: filename

!********************

write(6,’(a)’) ’The number of tapers to get ’
read(5,*) kspec
write(6,’(a)’) ’The time bandwidth product ’
read(5,*) tbp
write(6,’(a)’) ’The time series length ’
read(5,*) npts

dt = 0.01d0

if (npts <= 1) then
write(6,’(a)’) ’>>> Too few terms in the series’
stop

endif

nf = 1 + npts/2

! Allocate memory

allocate(x(npts))
allocate(t(npts))
allocate(freq(nf))
allocate(spec(nf))
allocate(err(nf,2))
allocate(sbar(nf))

! Define time axis

do i = 1,npts
t(i) = dble(i)*dt

enddo

filename = ’seismic.dat’

open (11, file=filename, status=’old’)
do k = 1, npts

read(11,*, iostat=ios) x(k)
if (ios<0) then

! End of file encountered
exit

8

endif
enddo
close(11)

! Get the spectrum estimate

call mtspec(npts,dt,x,tbp,kspec,nf,freq,spec, &
err=err,sbar=sbar)

! Plot

call gplot(t,x,output=’ts.ps’)
call gplot(freq,spec,logxy=’loglog’,output=’aspec.ps’)
call gplot(freq,sbar,logxy=’loglog’,output=’mspec.ps’)

end program mw_test

9

Figure 1: time series

10

Figure 2: Adaptive Spectral Estimate

11

Figure 3: Mean Spectral Estimate

12

References

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. In Proc. of the
IEEE , volume 70, pages 1055–1096.

13

