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Abstract— Phase-Type distributions are a powerful tool in

stochastic models of real systems. In this paper, we develop a tool
to represent these distributions as computational objects. It allows
the computation of multiple closure properties that can be used
in the modeling of large systems with multiple interactions. The
tool also includes capabilities for generate random numbers from
a specified distribution and procedures for fitting the parameter
of a distribution from a data set. This framework is built in an
extensible way, such that it is not limited to the already provided
algorithms.

INTRODUCTION

Phase-Type distributions are a general class of probability
distributions that generalize the well known exponential
distribution through the composition of exponential phases
[7]. They were first introduced by Marcel Neuts [8], and have
the important property of a rational Laplace transform, which
makes them a subset of the distributions presented by David
R. Cox [9] (even though the distributions proposed by Cox
admit complex probabilities, the Coxian distributions treated
in this document are all related to real probabilities) . In this
case, the extension is made as a generalization of the method
of phases proposed by Erlang, and has the relevant feature of

numerical tractability, as noted by Neuts [8].

A usual problem in building probabilistic models is the
assumption of exponential behavior in the interrarival and
processing times. Continuous Phase-Type distributions can be
used to avoid such difficulty since they are dense in [0,∞),
and thus they can represent any behavior defined over this
support. This makes Phase-type distributions a crucial tool in
extending markov models to non-markovian behavior.

In this paper we present an object-oriented tool (jPhase)
to model Phase-Type distributions in an computational
framework, allowing the manipulation of these distributions
as computational objects. The developed structure induces a
formal representation of a Phase-type distribution and a set of
properties that it should have. These properties are related to
the computation of the probability density or mass function,
the cumulative distribution function and the moments, among
others.

In recent years, some computational tools have been
developed to model large complex systems in an object-
oriented fashion [10]. From a practical point of view, an
analyst can build a computational probabilistic model that
represents a real system using a traditional markov model
but using Phase-Type instead of exponential distributions. In
order to do that, it is important to find a good way for going
from data sets to parameters of Phase-Type distributions. One
of the complementary packages of the tool (jPhaseFit) has a
set of classes to fit the parameters of a Phase-Type distribution
from a data set, through the implementation of some recently
developed algorithms. These classes are included in a
computational structure that allows the characterization of the
desired input and output of any fitting algorithm, in terms of
computational objects.

To represent the complex relations that may arise in a
real system, the analyst can also take advance of another
important issue of Phase-Type distributions: their closure
properties. The framework includes the implementation of
many of these properties that can be used extensively in the
building of a model.



This tool includes another complementary package
(jPhaseGenerator), which establishes the structure for any
Phase-Type random variates generator, and implements the
algorithms developed by Neuts and Pagano [11] for the
discrete and the continuous cases.

With this structure, any person with a basic knowledge in
object-oriented programming can use Phase-Type distributions
in the analysis of a system, through the fitting of real data
to a Phase-Type distribution and the computation of some
performance measures with the help of the procedures and
utilities implemented. A graphic user interface was also
developed in order to allows the interaction with the tool
through the familiar windows, buttons and menu bars. This
interface allows an easier interaction with the user, and
can be used to make a relevant analysis of a real system,
including data fit, closure properties computation, and
graphical presentation of the probability density function and
cumulative probability function.

This document is organized as follows: in the first section
some basic definitions of Phase-Type distributions are
presented, as well as an overview of the parameter fitting
methods and the random variates generation algorithms. In
sections II, III and IV, the developed computational structure
is presented: the main, the generator and the fitter modules.
In section V some illustrative examples are given, and some
conclusions are stated in the last section.

I. PHASE-TYPE DISTRIBUTIONS

In this section, the definition and basic properties of
Phase-Type distributions are stated, according to the treatment
presented in [8] y [12]. Therefore, the proofs of the definitions
in this section are not included and the interested reader can
find them in the given references.

A Continuous Phase-Type distribution can be defined as the
time until absorption in a Continuous Markov Chain, with one
absorbing state and all others transient. The generator matrix
of that process can be written as:

Q =
[
0 0
a A

]
,

where the first entry in the state space represents the absorbing
state. As the sum of the elements on each row must be equal
to zero, a is determined by

a = −A1,

where 1 is a column vector of ones. In order to completely
determine the process, the initial probability distribution is
defined and can be partitioned in the same way of the generator
matrix [

α0 α
]
,

where α0 is the probability of starting the process in the state
0, and the sum of all the components in the vector must
be equal to 1. Therefore, α0 is determined by the following
relationship

α0 = 1−α1.

In this way, a Continuous Phase-Type Distribution is com-
pletely determined by the parameters (α, T ), and its probabil-
ity distribution function is defined as

F (x) = 1−αeAx1, x ≥ 0,

which has a clear connection to the well known exponential
distribution. Furthermore, if there is just one transient phase
with associate rate λ and it is selected with probability one,
then the distribution is exactly the exponential case. From the
previous expression, the probability density function can be
computed as

f(x) = αeAxa, x > 0.

And similarly, the Laplace-Stieltjes transform of f(·), is given
by

f(s) = α0 + α(sI−A)−1a, Re(s) ≥ 0,

from which, the non-centered moments can be calculated as

E[Xk] = k!α(−A−1)k1, k ≥ 1.

A Discrete Phase-Type distribution can be seen as an
analogous case to the continuous distribution. In this case,
the distribution can be defined as the number of steps until
absorption in a Discrete Markov Chain, with one absorbing
state and all other transient. The properties of this case can
be found in [12].

A relevant issue of Phase-Type distributions is that they
are closed under a set of operations, such as convolution,
order statistics, convex mixtures, among other. These closure
properties can be exploited in the modeling process of real
systems as done in [13]. Particularly, continuous Phase-
Type distributions have some extra closure properties: the
distribution of the waiting time in a M/PH/1 queue,
the residual time, the equilibrium residual time, and the
termination time of a Phase-Type process with Phase-Type
failures [14].

The Continuous and Discrete Phase-Type distributions have
the important property of being dense in [0,∞) and the
non-negative integers, respectively (the proof of this property
can be found in [15]). This implies that any distribution
with support on those sets can be approximated by a Phase-
Type distribution with the appropriate number of phases and
parameters α and T. In this sense, any non-negative behavior
could be represented through these distributions, but this is not
completely true because the number of phases needed could
be infinite, which is computationally nonviable.



A. Phase-Type Random Variates Generation

In many large applications, simulation is the appropriate
tool to model the system because of the complex relations be-
tween different stochastic variables. This makes that a random
number generator become an important tool to model a wide
range of non-deterministic systems. Neuts and Pagano [11]
developed two similar algorithms to generate random variates
from discrete and continuous Phase-Type distributions. These
algorithms are supported on the alias method [16] to generate
variates from discrete distributions in order to simulate the
process of selecting an initial state and then jump to the next
one according to random vectors.

B. Fitting Algorithms

In the last twenty years, the problem of fitting the param-
eters of a Phase-Type distribution has received great atten-
tion from the applied probability community. These different
approaches can be classified in two major groups: maximum
likelihood methods and moment matching techniques, as noted
in [17]. Nevertheless, almost all the algorithms designed for
this task have an important characteristic in common: they
reduce they set of distributions to be fitted, from the whole
Phase-Type set to a special subset. In section IV, those
algorithms included in the computational package will be
revisited and further explained.

II. JPHASE: THE OBJECT-ORIENTED FRAMEWORK

One of the contributions of this work is the design and
implementation of an object-oriented framework that allows
the computational manipulation Phase-Type distributions. To
date, there is no academic or commercial software that can
offer the capabilities of representation nor manipulation of
Phase-Type distribution in a unified fashion. For example,
with the developed tool, it is possible to create an object that
represents a continuous Phase-Type distribution, calculate the
value of its probability density function (pdf) or its cumulative
distribution function (cdf), as well as any power moment. It
is also possible to compute the minimum or the maximum
between two distributions, as well as other closure properties,
e.g. the distribution of the waiting time in a M/PH/1 queue.

Now, some of the most important issues about the
computational structure will be discussed in order to give a
good understanding of the framework. It must be said that the
computational architecture is divided in three gross packages:
jPhase, jPhaseGenerator and jPhaseFit. The first
is related to the computational representation of Phase-Type
distributions and will be explained in this section. The second
builds the structure to implement Phase-Type random variates
generators and will be discussed in section III. The last one
offers a computational representation of Phase-Type fitting
algorithms and will be explained in detail in section IV. The
first package can be seen as the heart of the whole framework
and the others are supported on it.

A. General Structure

The jPhase package is supported on a set of interfaces,
abstract classes and concrete classes. The interfaces determine
the characteristics of an object and have no implementation
of any method. As can be seen in the simple Class Diagram
of Figure 1, there are three interfaces in the jPhase package:
PhaseVar, ContPhaseVar, and DiscPhaseVar. These
interfaces determine the behavior of a PhaseType distribution
in both the continuous and discrete cases.

The abstract classes AbstractContPhaseVar and
AbstractDiscPhaseVar implements the corresponding
interface (discrete or continuous), in order to develop some of
the methods determined by the interfaces. Finally, the concrete
classes extends the corresponding abstract class, and thus they
make use of the already implemented methods. These methods
are useful for any user that wants to develop an own concrete
class, because he or she doesn’t need to get worried about
the whole set of distribution properties, but only needs to
implement a little set of simple methods. In the next sections,
the properties of these interfaces, abstract and concrete classes
will be explained.

B. Interfaces

As it was said above, the jPhase package consists of three
interfaces, that determine the behavior of any Phase-Type
distribution as shown next.

• PhaseVar
This interface defines the set of properties that are com-
mon to both discrete and continuous Phase-type distribu-
tions. Since this is the core interface in the framework, it
has the major quantity of methods and all other interfaces
ans classes have fewer. The methods that the interface
force to implement for any distribution can be divided in
three groups: access, moments and distribution methods.

• DiscPhaseVar and ContPhaseVar
This interfaces determine some of the closure properties
valid for discrete and continuous Phase-Type variables, as
those discussed in section I. The methods defined by each
one of this interfaces can be partitioned in two groups:
distribution and closure methods. The closure properties
can only be defined at this level because each one of
the discrete and continuous sets are closed under these
properties, but not the whole set of Phase-Type distribu-
tions. Some of the methods defined by the interfaces are
shown in Table II, where all but the distribution-related
methods apply for both cases. Next, in Table III some
other methods are shown, but they are only defined for
the continuous class, as discussed in section I.

C. Abstract Classes

As shown in Figure 1, the ContPhaseVar
interface is implemented by the abstract class
AbstractContPhaseVar, which implements almost all
the methods defined by PhaseVar and ContPhaseVar.
In particular, none of the methods implemented by this



Fig. 1. Simple jPhase Package Class Diagram

TABLE I
SOME METHODS FOR THE PHASEVAR INTERFACE

Type Method Result
getMatrix() Generator matrix A
setMatrix(A) Set the transition matrix equal to

the parameter
getVector() Initial probability distribution vec-

tor α
Access
methods

setVector(α) Set the initial probability vector
equal to the parameter

getNumPhases() Number of transient phases in the
distribution

getVec0() Value of α0

getMat0() Exit rate vector a = −A1
copy() Deep copy of the distribution
expectedValue() Expected value of the distribution

Moments variance() Variance of the distribution
methods stdDeviation() Returns the standard deviation.

CV() Squared coefficient of Variance.
moment(k) k-th non-central moment of the dis-

tribution.
cdf(x) Cumulative distribution function at

x
prob(a, b) Probability that the variable takes a

value between a and b
Distribution survival(x) Survival function at x
methods lossFunction1(x) Value of the order-one loss func-

tion evaluated at x
lossFunction2(x) Value of the order-two loss func-

tion evaluated at x
quantil(x) Quantil x of the distribution
median() Median of the distribution

TABLE II
SOME METHODS FOR THE DISCPHASEVAR AND CONTPHASEVAR

INTERFACE

Type Method Result
Distribution
methods

pmf(x) or
pdf(x)

Value of the probability mass func-
tion at x (discrete case) or the prob-
ability density function (continuous
case)

sum(Y ) Convolution between the original
distribution and Y

sumGeom(p) Sum of a geometric number (with
parameter p) of i.i.d. Phase-Type
distributions as the original one

Closure
methods

sumPH(Y ) Convolution of a discrete Phase-
Type (Y ) number of i.i.d. Phase-
Type distributions

mix(p, Y ) Convex mixture between the origi-
nal distribution (with weight p) and
Y

min(Y ) Minimum between the original dis-
tribution and Y

max(Y ) Maximum between the original
distribution and Y

Other
methods

newVar(n) New n phase variable with the
same representation as the original

toString() Returns a string representation of
the Phase-Type distribution (in-
cluding its associated vector and
the matrix)

TABLE III
SOME FURTHER CLOSURE METHODS FOR THE CONTPHASEVAR

INTERFACE

Method Result
times(k) Distribution of the variable scaled by k

residualTime(x) Distribution of the residual time at x

eqResidualTime() Distribution of the equilibrium residual time
waitingQ(ρ) Distribution of the waiting time in a

M/PH/1 queue with traffic coefficient
equal to ρ

class depends on the formal representation of the matrices
and vectors involved. This means that all the operations
are executed using solvers and preconditioners that apply
for both sparse and dense representations of matrices and
vectors. Moreover the probably most difficult routines are
solved by this abstract class, such as the computation
of the probability density function, that implies the use
of uniformization methods for solve a set of differential
equations[12]. The same arguments apply for the abstract
class AbstractDiscPhaseVar, that implements the
interface DiscPhaseVar.

This way, the only methods that the user
must implement when developing a concrete
class that extends AbstractContPhaseVar or
AbstractDiscPhaseVar are:

• getMatrix and setMatrix
• getVector and setVector
• newVar
• copy
As can be seen, this methods depend on the particular repre-

sentation of the distribution, e.g. if the matrix is represented by
a particular sparse pattern, then the only one class of matrices
that can be set must have the same pattern. Also the newVar
and copy methods must return a variable that belongs to the
same class of the original one. The concrete classes explained
in the next section are themselves examples of classes that
extend the abstract ones.

D. Concrete Classes

The developed concrete classes are those that are a
final user will usually utilize. They have been designed
as general Phase-Type representations for the continuous
and discrete cases, and with dense and sparse storage. The
DenseContPhaseVar and DenseDiscPhaseVar are
classes that represent continuous and discrete Phase-Type
distributions, using the DenseMatrix and DenseVector
classes defined by MTJ. This classes are useful for many
applications, where the number of phases is not large and the
memory is not a problem. They also have constructors for
many simple distributions such as exponential or Erlang in
the continuous case, and geometric or negative binomial in



the discrete case.

Nevertheless, the use of matrices with dense representation
can be a problem because of the large number of phases. The
SparseContPhaseVar and SparseDiscPhaseVar
classes are built over the FlexCompRowMatrix and
SparseVector MTJ classes, which give a good alternative
when the number of phases is large but the number of
entries is little relative to the total number of n2 entries. It is
important to note that the FlexCompRowMatrix allows a
flexible sparse pattern stored by rows, that makes of this class
a general sparse representation. Other specific representation
could be developed by using a particular sparse pattern, e.g.
upperdiagonal matrices.

III. JPHASEGENERATOR: THE VARIATES GENERATOR
MODULE

This package was developed in order to define the
behavior of any Phase-Type random variates generator.
This behavior is specified by the abstract class
PhaseGenerator, which is the core the package. As
can be seen in Figure 2, this abstract class is extended
by the concrete classes NeutsContPHGenerator and
NeutsDiscPHGenerator, that implement the algorithms
proposed by Neuts and Pagano [11].

Fig. 2. Simple jPhaseGenerator Package Class Diagram

A. PhaseGenerator Interface

This abstract class defines the basic methods that a
Phase-Type random variate generator should have. The class
includes an attribute, that belongs to the PhaseVar class,
and is the distribution from which, the random variates will
be generated. This distribution can only be specified in the
constructor method, because the variable must be persistent
in time for a particular PhaseGenerator object. This means
that if the user wants to generate variates from another
distribution, he or she must create a new PhaseGenerator.

In the constructor method, the variable is assigned and
the initialization() method is called. It is expected
that the user employs this method in order to effectively
initialize the algorithm, and then a random variate can
be generated after the construction of the PhaseGenerator.
Another method defined by the abstract class is getVar(),
which always returns the Phase-Type variable that remain
under the PhaseGenerator and is already implemented.

The last two methods that a PhaseGenerator must implement
are getRandom() and getRandom(k). The first one must
return a variate that follows the distribution specified at
the construction, and the second must return k independent
variates with the same characteristic.

B. Concrete Classes

Up to day, two concrete classes extend the
previously explained PhaseGenerator abstract
class. These are NeutsContPHGenerator and
NeutsDiscPHGenerator, which implement the method
proposed by Neuts and Pagano [11]. The first one implements
the continuous case and the second the discrete one. The
continuous algorithm has a first step, in which the continuous
chain is transformed is a discrete one, using the well-known
embedded chain. Thereafter, the main algorithm (for discrete
distributions) can be used for both cases.

The algorithm simulates the whole process in the chain: it
first choose an initial state from the distribution given by the
initial probability vector; then it selects a next state to visit
using the discrete distribution associated with the present
state, given by the associated row in the transition matrix; the
selection of the next state is repeated until the chosen state
is the absorbing one. In the discrete case, the value of the
random variate is the number of steps (selections) made until
absorption. For the continuous case, the number of visits to
each state is stored and an Erlang variate is generated for
each state with non-zero number of visits. The parameters of
the Erlang distributions are the associated rate of the state
and the number of visits carried out. For example, if the
state i was visited ni times and has an associated rate of
λi, an Erlang(λi,ni) random variate must be generated. The
sum of these variates over all the states is the value of the
Phase-Type random variate.

Two important issues of this algorithm must be emphasized.
The first one is the several use of discrete distributions to
generate the variates, which can be done efficiently through
the alias method [16]. The second issue is that for the
continuous case, in addition to the discrete variates, only
Erlang variates must be generated. In the case of many
visits to the same state, these variates can also be efficiently
generated by multiplying a gamma variate with parameters
(ni, 1) times λi, that will be an Erlang variate with the
required parameters [11].

The algorithms implemented in these classes are supported
by the utilities class GeneratorUtils, that have several
procedures useful for the generators. Particularly, it has a
general implementation of the alias method used to generate
variates from discrete distributions [16]. It also has an
implementation of the polynomial-time algorithm proposed
by Gonzalez et. al. [18] to perform a Kolmogorov-Smirnov
test, that can be useful to test the goodness-of-fit of the
generated numbers in relation to the theoretic Phase-Type
distribution.

IV. JPHASEFIT: THE FITTING MODULE

This package contains the structure that defines the
behavior of the classes that implement algorithms to fit



the parameters of a Phase-Type distribution. As shown in
Figure 3, the interface PhaseFitter is in the top of the
package and defines the basic method that any PhaseFitter
should have: fit(). This method has no parameters and must
return a Phase-Type variable as the result of the fitting process.

A. Abstract Classes

In the next level, there are two abstract classes
that implement the PhaseFitter interface:
ContPhaseFitter and DiscPhaseFitter, for
the continuous and discrete case, respectively. These classes
have two additional issues: a constructor method from a
data set in array format; and a method to compute the
log-likelihood of the fitted distribution in relation to the data
set (getLoglikelihood()). This is done because the
log-likelihood is a usual way to compare the performance
of fitting algorithms. In addition, this classes specify the
continuous or discrete nature of the variable to be fitted
in two different ways: the first one is the inclusion of the
var attribute, where the fitted variable must be stored
(a ContPhaseVar object for the continuous case or a
DiscPhaseVar for the discrete case); the other way is the
use of a data array as attribute, that in the continuous case is
a double array, and in the discrete case is an integer array.

In the next level of abstract classes, a further division is
done between classes that implement Maximum Likelihood
(ML) algorithms and those related to Moment Matching
techniques. This is done for both continuous and discrete
cases. For the ML classes (MLContPhaseFitter
and MLDiscPhaseFitter), there is a new attribute
called logLH, that stores the log-likelihood value in
order to take advance of the usual computation of the
log-likelihood in the fitting process. For the Moment-
Matching related classes (MomentsContPhaseFitter
and MomentsDiscPhaseFitter), a new set of attributes
is defined: m1, m2, and m3. These are the moments to me
matched and are specified with a new constructor that receives
only the three moments to be matched. An alternative way
is the use of the redefined constructor that receives the data
trace and calculates its moments. It must be said that there is
not alternative to change the data, moments of log-likelihood
attributes from outside the class, implying a safe fitting
process.

B. Concrete Classes: Maximum Likelihood Algorithms

The set of classes that implement maximum likelihood
algorithms are almost all for Continuous Phase-Type distri-
butions, because the most of the efforts have been done in
that direction. For each one of the following algorithms, there
is an associated class the executes the procedures to fit the
parameters of a distribution.

1) General Phase-Type Distribution EM Algorithm [1]:
In 1996 Asmussen, Nerman and Olsson [1] presented a
specialized version of the EM algorithm in order to fit
the parameters of the whole set of continuous Phase-Type
distributions, without reducing the target distribution to a
restricted subset. The EM algorithm is a general statistical
technique that was first introduced by Dempster et. al. [19]
to deal with the problem of incomplete data (a good source
to review it may be [20]). The idea behind this algorithm is
that a complete sample from Phase-Type realizations should
include the selected initial state, the whole path of states
followed until absorption, and the time spent in each of these
states. With this complete sample, it’s easy to estimate the
parameters of the distribution.

Nevertheless the sample obtained from Phase-Type
realizations are only the time until absorption. In this way,
the problem can be seen as the estimation of the parameters
from an incomplete sample, which makes natural the use of
the EM algorithm. The algorithm begins from an initial guess
of the parameters and the iterations include the computation
of the likelihood (E-step) and the its maximization to obtain
a new set of parameters (M-step). In this case, the heavy
work must be done in the E-step, where a set of n(n + 2)
linear differential equations must be solved for a distribution
of n phases. It must be noted that this algorithm does not
select the number of phases, and it must be entered as an
initial parameter. Even though this algorithm has been already
evaluated in [17], it is included in the benchmark evaluation
because it is the only one that fits the parameters of the whole
Phase-Type class.

The concrete class that implements the algorithm
is EMPhaseFit, that extends the abstract class
MLContPhaseFitter. In this implementation, the method
fit() doesn’t need the specification of any parameter but
it tries with distributions from 1 to 10 to find the one that
shows the greatest log-likelihood. To do this, it calls the
method fit(n), that executes the proper algorithm to fit
the parameters of a general Phase-Type distribution with n
phases. In every iteration, this method calls the eStep()
and mStep methods that executes the procedures for each
of those steps in the EM algorithm. Particularly, the E-step
uses an order-four Runge-Kutta procedure to solve the set
of differential equations, which solution is expressed in the
inner class solution.

The user could also make use of another constructor for this
class in order to specify some features for the algorithm. With
the method EMPhaseFit(precision, iterations,
evalPoints), three important features can be set: the preci-
sion for stopping the algorithm when the parameters show little
change; the maximum number of iterations that the algorithm
can execute; and the evalPoints parameter determines the
factor to multiply the data trace size in order to obtain the
number of evaluation points for the Runge-Kutta method.



Fig. 3. Simple jPhaseFit Package Class Diagram

2) Hyper-Exponential Distribution EM Algorithm [2]:
The hyper-exponential distribution is a very special case of
Phase-Type distributions, since the initial probability vector
defines the probability of choosing the exponential phase to
visit, and the generator matrix have diagonal representation
with the rates of the i-th phase in the position (i, i). Thus
the number of parameter to fit a n-phase hyper-exponential
distribution are 2n. The algorithm proposed by Khayari et. al.
[2] is also an EM algorithm like the explained above. It begins
with an initial guess of the parameters, that can be random
or related to the properties of the trace (e.g. the expected
value). The authors propose an easy way to select the initial
parameters. Then a function to evaluate the quality of the
parameters is calculated in the E-step through the probability
density function of the data trace given the parameters. In
the M-step, the new set of parameters is computed using
estimators for the rates and the probabilities but not for the
number of phases, that is taken as a given parameter.

The implementation of the algorithm was done in the
EMHyperExpoFit class, where a method fit(n) is im-
plemented in order to fit a distribution with n phases. As the
method fit() must also be implemented in order to follow
the parameters of the PhaseFitter interface, it executes
several trials of configurations from one to ten phases, and
selects the distribution with greatest likelihood. With the use
of another constructor, the user can also specify the maximum
number of iterations that the algorithm can execute and the
precision level required to determine when the change in the
estimated parameters is too little and the algorithm should
stop.

3) Hyper-Erlang Distribution EM Algorithm [3]: In 2005,
Thümmler et. al. presented a method that fits the parameters
of a hyper-Erlang distribution [3], which is a very interesting
subset of the Phase-Type distributions since they are also
dense in [0,∞). In some results provided by them, the
EM algorithm developed for this special class has a better
behavior in terms of likelihood than the one designed for
the complete Phase family [1]. The algorithm receives as a
parameter the number of Erlang branches in the distribution
as well as the total number of exponential phases in the
distribution. With this information, the algorithm determines
all the possible configurations of the Erlang branches and
executes a version of the EM algorithm for each case. Finally,
the configuration with the greatest likelihood is selected as
the result of the algorithm.

As can be seen, this algorithm needs more information than
the previous ones, and so the routine fit() makes a different
work than just try distributions with one to ten phases. In
the EMHyperErlangFit class, the method fit() guides
the search of the configuration by means of the coefficient
of variation of the data trace. When the coefficient is lower

than one, then it doesn’t allow more than one branch since
it has been shown that the Phase-Type variable with the least
coefficient of variation is the n-Erlang( 1

n ) [21]. When the coef-
ficient of variation is greater than one, it enforces the creation
of multiple branches as well as phases in each of them. The
method fit(n, m) executes the effective procedure proposed
in the paper for a distributions with n phases and m branches.
When all the possible configurations has been determined, this
method calls fit(n, m, r) where the number of phases at the
i-th branch is ri. For this method, the parameters related to
precision and number of iterations are important and the user
can fix them with use of a special constructor.

C. Concrete Classes: Moment Matching Algorithms

The distribution moments usually play an important role
in the performance analysis of real systems [5]. This has
been an important motivation for the improvement of moment
matching techniques, and the attention given by different re-
search communities (Operations Research, Computer Science
and Telecommunication Networks, among others). Some of the
most recent advances have been implemented in the jPhaseFit
module, as will be explained in this section.

1) Acyclic Continuous order-2 Distributions [4]: In
2002 Telek and Heindl [4] proposed an algorithm to fit
the parameters of an acyclic Phase-Type distributions of
second order (two phases). Acyclic distributions have been
extensively studied since they have some important properties,
as a canonic form developed by Cumani [22] and a upper
triangular transition or generator matrix. In that paper,
they establish bounds on the set of first three moments
representable by acyclic distributions of second order, for
the discrete and continuous cases. Over the characterization
of these bounds, they build the algorithm that matches three
moments with the three parameters of this distribution: the
rates of each phase and the absorption probability after the
first phase (the initial probability is all in the first phase as in
the Coxian distribution).

This algorithm is implemented by the class
MomentsACPH2Fit, that extends the abstract class
MomentsContPhaseFitter. As it is constructed with the
three moments to be matched (given explicitly or computed
from a data trace), the algorithm begins with the computation
of the bounds, in order to determine if the moment set is
representable. If not, the moments are corrected to the nearest
point in the representable region with a warning message
about the correction for the user. When the moment set is
representable, the parameters of the distribution are calculated
according to the equations shown by the authors. Finally, the
distribution is constructed with the parameters and returned
to the user.



In the same paper, the authors present an analo-
gous algorithm for the discrete case. It works in a
similar fashion and is completely implemented by the
class MomentsADPH2Fit, that extends the abstract class
MomentsDiscPhaseFitter.

2) Erlang-Coxian Distributions[5]: The next step in
moment-matching techniques was given by Osogami and
Harchol in a series of papers [23] [24] [5]. This extension
consists on the characterization of the bounds imposed
over the first three moments representable by a Phase-Type
distribution withn n phases. They also introduce Erlang-
Coxian distributions, named because they can be represented
as the convolution of an Erlang and a Coxian distribution of
second order. They present an algorithm to fit the parameters
of a Erlang-Coxian distribution with or without mass at zero,
an important issue in constructing matrix-geometric models
from phase type distributions. An important issue is that the
algorithm itself determines the number of phases needed to
represent the set of moments, making easier the use of the
algorithm since the user doesn’t need to try with different
configurations. The resulting distributions are not large in the
number of phases but are not strictly minimal.

The implementation of the algorithms is given
by two classes: MomentsECCompleteFit and
MomentsECPositiveFit. The first one is built over
the “complete solution” proposed by the authors, where the
moment set is representable by the convolution of Erlang
and Coxian distribution but the resulting distribution can
have a positive mass on zero. To avoid this, the second class
implements the “positive solution”, where all the resulting
distributions have no mass at zero, but the Erlang-Coxian
distribution must be extended through a convolution or a
convex mixture with a exponential distribution in order
to obtain the strictly positiveness. Whenever the complete
solution returns a positive distribution, this will be used by
the MomentsECPositiveFit, an issue that forces this
this class to depend on the MomentsECCompleteFit
class.

3) Acyclic Continuous Distributions [6] : One of the
most recent effort done in this area was made in 2005 by
Bobbio, Horvath and Telek [6], who present an algorithm to
match a set of first three moments with acyclic Phase-Type
distributions(APH). They show the possible sets that can be
represented by an acyclic distribution of order n. Then they
show how to match the first three moments in a minimal
way, i.e. using the minimal number of phases needed to
do it. It is done by determining the region representable
by an APH of n phases but not with an APH with n − 1.
This region is then partitioned in five areas that represent
different distribution configurations, such as the Erlang-Exp
structure that represents and n − 1 Erlang distribution with
an additional exponential phase after it.

The algorithm proposed by the authors for the positive
case is implemented in the MomentsACPHFit class. There

the algorithm begins with the first three non-central moments
and computes the first two normalized moments. With this
information, the required number of phases is computed and
the moment set is evaluated in order to find in which region
it falls. When it is determined, the parameters are fitted
according to the equations presented by the authors.

V. EXAMPLES

In order to give a closer understanding of jPhase, some
examples will be given to clarify the construction and
manipulation of the computational objects. As shown in
Figure 4, the distributions can be created from arrays of
doubles, that represent the initial probability vector and the
generator matrix of the transient states (as specified in section
I). Once the distributions are created, they can be manipulated
through the use of closure properties, as shown in Figure 4,
where the convolution between the variables v1 and v2 is
calculated.

double [ ] [ ] A = new double [ ] [ ] { {−2,2} , {2,−5} } ;
double [ ] a l p h a = new double [ ] { 0 . 2 , 0 . 4} ;
DenseContPhaseVar v1 = new DenseContPhaseVar ( a lpha , A ) ;

double [ ] [ ] B = new double [ ] [ ] {
{−4 ,2 ,1} , {1 ,−3 ,1} , {2 , 1,−5} } ;

double [ ] b e t a = new double [ ] {0 . 1 , 0 . 2 , 0 . 2} ;
DenseContPhaseVar v2 = new DenseContPhaseVar ( be t a , B ) ;

ContPhaseVar v3 = v1 . sum ( v2 ) ;
System . o u t . p r i n t l n ( ” v3 : ”+v3 . t o S t r i n g ( ) ) ;

Fig. 4. jPhase: Example 1

The resulting variable from the precious code has the usual
representation, which includes the initial probability vector α
and the transition matrix T, as explained in section I. The result
from the former example is shown next, where the calculated
variable is printed.

v3 :

Phase−Type D i s t r i b u t i o n
Number o f P ha se s : 5
V ec to r :

0 .2000 0 .4000 0 .0400 0 .0800 0 .0800
Ma t r i x :

−2.0000 2 .0000 0 .0000 0 .0000 0 .0000
2 .0000 −5.0000 0 .3000 0 .6000 0 .6000
0 .0000 0 .0000 −4.0000 2 .0000 1 .0000
0 .0000 0 .0000 1 .0000 −3.0000 1 .0000
0 .0000 0 .0000 2 .0000 1 .0000 −5.0000

Fig. 5. jPhase: Result for Example 1

Since jPhase is built over the Matrix Toolkit for Java
(MTJ) library [25], it is also possible to construct Phase-
Type distributions from matrices and vectors defined in that
library. As can be seen in the following example, the matrix
and the vector of the Phase-Type distribution are first built as
DenseMatrix and DenseVector (MTJ objects), and then
the continuous Phase-Type distribution is constructed.



DenseMat r ix A = new DenseMat r ix (
new double [ ] [ ] { {−4 ,2 ,1} ,

{1 ,−3 ,1} , {2 , 1,−5} } ) ;
DenseVec tor a l p h a = new DenseVec tor ( new double [ ]

{0 . 1 , 0 . 2 , 0 . 2} ) ;

DenseContPhaseVar v1 = new DenseContPhaseVar ( a lpha , A ) ;

double rho = 0 . 5 ;
PhaseVar v2 = v1 . wa i t ingQ ( rho ) ;
System . o u t . p r i n t l n ( ” v2 :\ n ”+v2 . t o S t r i n g ( ) ) ;

Fig. 6. jPhase: Example 2

In the previous example, the distribution of the waiting time
in queue is computed taking the variable v1 as the service
time distribution and assuming that the traffic coefficient of
the M/PH/1 queue is equal to 0.5. The resulting distribution
is then printed and the output is shown next.

v2 :

Phase−Type D i s t r i b u t i o n
Number o f P ha se s : 3
V ec to r :

0 .1500 0 .2250 0 .1250
Ma t r i x :

−3.8500 2 .2250 1 .1250
1 .1500 −2.7750 1 .1250
2 .3000 1 .4500 −4.7500

Fig. 7. jPhase: Result for Example 2

Another way to do the former calculations is through the
use of the Graphic User Interface (GUI). This can be used to
build Phase-Type variables from direct input, or from a data set
that can be fit the parameters of the distribution. It also allows
to compute closure properties and has the capabilities to show
graphically the probability density function or the cumulative
probability distribution of a specified Phase-Type distribution.
A sample screenshot of the developed GUI is shown in Figure
8.

Fig. 8. jPhase: Graphic User Interface

As can be seen, the developed framework is an easy way
to deal with Phase-Type distributions and can be used as
a supporting tool in several practical researches, where the
main point is to build a probabilistic model that describes
the system, and the Phase-Type distributions are an important
tool to do it. Thus, the researcher can focus on the modeling
issue based on the computational representation developed in
this work.

VI. CONCLUSIONS

Phase-Type distribution has shown to be a powerful tool in
computational probability since they can be used as input of
Markov chains, which allows the use of efficient algorithms
to compute measures of performance of real systems. In

this work a computational framework has been designed and
developed in order to allow the computational representation
and manipulation of these distributions. The computational
objects allows the user to concentrate in the modeling issues
and not in the computation of distributions, moments or
closure properties. In this way, the developed tool makes
more accessible the of Phase-Type distribution for researches
interested in stochastic modeling and performance evaluation
of real systems.

The extensibility of the framework helps the user to
develop new classes that can have a different representation
(special sparse structures), but still exploiting the implemented
methods in abstract classes. Even more, in the development
of such extended classes the user can just implement some
simple methods for the specific representation, or can develop
procedures for the some or all the methods related to the
distribution. In this way, the structure is not restricted to the
developed methods, e.g. the researcher could use a different
solver to compute the density function of a particular class of
distributions.

The framework also includes a module for Phase-Type
variates generation, which can be used to model large systems
using simulation models with Phase-Type distributions. The
tool has itself some procedures to do that, but the user could
also develop a new algorithm and implement it with the help
of the utilities methods and the unified framework.

Finally, the fitting module offers a set of recently developed
algorithms to fit the parameters of a Phase-Type distribution
from a data trace. It is possible to use general setting for the
algorithms, without specifying any parameter. But the user
can also determine specific characteristics, as the number of
phases in the distribution, or the precision for convergence
criterion. There is also a framework that can help to design
the implementation of new algorithms, since the user have all
the distribution classes as well as other algorithms to support
his or her development.
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