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ABSTRACT
We study a supply chain consisting of a single man-
ufacturer and two retailers. The manufacturer pro-
duces goods on a make-to-order basis, while both re-
tailers maintain an inventory and use a periodic re-
plenishment rule. As opposed to the traditional (r, S)
policy, where a retailer at the end of each period or-
ders the demand seen during the previous period, we
assume that the retailers dampen their demand vari-
ability by smoothing the order size. More specifically,
the order placed at the end of a period is equal to β
times the demand seen during the last period plus
(1 − β) times the previous order size, with β ∈ (0, 1]
the smoothing parameter.

We develop a GI/M/1-type Markov chain with only
two nonzero blocks A0 and Ad to analyze this sup-
ply chain. The dimension of these blocks prohibits
us from computing its rate matrix R in order to ob-
tain the steady state probabilities. Instead we rely on
fast numerical methods that exploit the structure of
the matrices A0 and Ad, i.e., the power method, the
Gauss-Seidel iteration and GMRES, to approximate
the steady state probabilities.

Finally, we provide various numerical examples that
indicate that the smoothing parameters can be set
in such a manner that all the involved parties bene-
fit from smoothing. We consider both homogeneous
and heterogeneous settings for the smoothing param-
eters.

1. INTRODUCTION
Consider a two-echelon supply chain consisting of

a single retailer and a single manufacturer, where the
retailer places an order for a batch of items with
the manufacturer at regular time instants, i.e., the
time between two orders is fixed and denoted as r.
The manufacturer may be regarded as a single server
queue that produces these items and delivers them to
the retailer as soon as a complete order is finished.
The retailer sells these items and maintains an in-
ventory on hand to meet customer demands. When
the customer demand exceeds the current inventory
on hand, only part of the demand is immediately ful-
filled and the remaining items are delivered as soon
as new items become available at the retailer. Hence,

items are backlogged instead of being lost (i.e., there
are no lost sales). We assume that the manufacturer
does not maintain an inventory, but simply produces
items whenever an order arrives, i.e., it operates on a
make-to-order basis.
A key performance measure in such a system is the

fill-rate, which is a measure for the proportion of cus-
tomer demands that can be met without any delay.
In order to guarantee a certain fill-rate it is impor-
tant to determine the size of the orders placed at the
regular time instants. This size will depend on the
current inventory position, defined as the inventory
on hand plus the number of items on order minus
the number of backlogged items. The rule that de-
termines the order size is termed the replenishment

rule. A well-studied replenishment rule exists in or-
dering an amount such that the inventory position is
raised after each order to some fixed position S, called
the base-stock level. This basically means that at the
regular time instants, you simply order the amount of
items sold since the last order instant. As a result, the
order policy of the retailer is called an (r, S) policy.
A common approach in the analysis of such a pol-

icy is to assume an exogenous lead time, which means
that the time required to deliver an order is indepen-
dent of the size of the current order and independent
of the lead time of previous orders. In [4] the (R,S)
policy was studied with endogenous lead times, mean-
ing the lead times depend on the order size and con-
secutive lead times are correlated. The results in [4]
indicate that exogenous lead times result in a severe
underestimation of the required inventory on hand,
as expected.
When the lead times are endogenous, it is clear that

a high variability in the order sizes comes at a cost,
as this increases the variability of the arrival process
at the manufacturer and therefore increases the lead
times. As a result, replenishment rules that smooth
the order pattern at the retailer were studied in [3]
and it was shown that the retailer can reduce the up-
stream demand variability without having to increase
his safety stock (much) to maintain customer service
at the same target level. Moreover, on many occa-
sions the retailer can even decrease his safety stock
somewhat when he smooths his orders. This is clearly
advantageous for both the retailer and the manufac-



turer. The manufacturer receives a less variable order
pattern and the retailer can decrease his safety stock
while maintaining the same fill rate, so that a coop-
erative surplus is realized.

In this paper we analyze the same set of replenish-
ment rules as in [3], but now we look at a two-echelon
supply chain consisting of one manufacturer and two
retailers, where either both, one or neither of the
retailers uses a smoothing rule. The main question
that we wish to address therefore exists in studying
whether all parties can still benefit when the orders
are smoothed and moreover who benefits most.

As in [3], one of the key steps in the analysis of
this supply chain system will exist in setting up a
GI/M/1-type Markov chain [7], that has only two
non-zero blocks, denoted as A0 and Ad. However,
as opposed to [3], the size of these blocks often pro-
hibits us from storing them into main (or secondary)
memory. This implies that iteratively computing the
dense R matrix, used to express the matrix geomet-
ric steady state vector of the GI/M/1-type Markov
chain, by one of the existing methods such as func-
tional iterations or cyclic reduction [1], is no longer
possible/efficient. Instead, we will rely on the spe-
cific structure of the matrices A0 and Ad and will
make use of numerical methods typically used to solve
large finite Markov chains, such as the shuffling algo-
rithm [5], Kronecker products, the power method, the
Gauss-Seidel iteration and GMRES [9].

2. MODEL DESCRIPTION
We consider a two-echelon supply chain with two

retailers and a single manufacturer, where both retail-
ers maintain their own inventory. Every period, both
retailers observe their customer demand. If there is
enough on-hand inventory available at a retailer, the
demand is immediately satisfied. If not, the shortage
is backlogged. To maintain an appropriate amount of
inventory on hand, both retailers place a replenish-
ment order with the manufacturer at the end of every
period. The manufacturer does not hold a finished
goods inventory but produces the orders on a make-
to-order basis. The manufacturers production sys-
tem is characterized by a single server queueing model
that sequentially processes the orders, which require
stochastic processing times. Once the complete re-
plenishment order of both retailers is produced, the
manufacturer replenishes both inventories. Hence,
the order in which the two orders are produced is
irrelevant, as shipping only occurs when both orders
are ready.

The time from the moment an order is placed to
the moment that it replenishes the retailers inven-
tory, is the replenishment lead time Tr. The queueing
process at the manufacturer clearly implies that the
retailers replenishment lead times are stochastic and
correlated with the order quantity. The sequence of
events in a period is as follows. The retailer first re-
ceives goods from the manufacturer, then he observes
and satisfies customer demand and finally, he places
a replenishment order with the manufacturer. The
following additional assumptions are made:

1. Customer demand during a period for retailer
i is independently and identically distributed
(i.i.d.) over time according to an arbitrary,

finite, discrete distribution D(i) with a maxi-

mum of m
(i)
D , for i = 1 and 2. The demand

at the retailers is also assumed to be indepen-
dent of each other. For further use, denote

mD = m
(1)
D +m

(2)
D .

2. The order quantity O
(i)
t of retailer i during pe-

riod t is determined by the retailers replenish-
ment rule and influences the variability in the
orders placed on the manufacturer. Possible re-
plenishment rules are discussed in the next sec-
tion.

3. The replenishment orders are processed by a sin-
gle FIFO server. This excludes the possibility of
order crossovers. When the server is busy, new
orders join a queue of unprocessed orders.

4. The orders placed during period t are delivered
when both orders have been produced.

5. Orders consist of multiple items and the pro-
duction time of a single item is i.i.d. according
to a discrete-time phase type (PH) distribution
with representation (α,U). For further use, we
define u∗ = e − Ue, with e a column vector of
ones.

The PH distribution is determined using the match-
ing procedure presented in [3], that matches the first
two moments of the production time using an order 2
representation, meaning the matrix U is a 2× 2 ma-
trix and α a size 2 row vector, even if the squared
coefficient of variation is small by exploiting the scal-
ing factor as in [2]. This implies that the length of
a time slot is chosen as half of the mean production
time of an item. In other words, the mean production
time of an item is two time slots, while the length of a
period is denoted as d time slots, where d is assumed
to be an integer.
The time from the moment the order arrives at the

production queue to the point that the production of
the entire batch is finished, is the production lead time
or response time, denoted by Tp. Note that the pro-
duction lead time is not necessarily an integer number
of periods. Since in our inventory model events occur
on a discrete time basis with a time unit equal to one
period, the replenishment lead time Tr is expressed in
terms of an integer number of periods. For instance,
suppose that the retailer places an order at the end

of period t, and it turns out that the production lead
time is 1.4 periods. This order quantity will be added
to the inventory in period t + 2, and due to our se-
quence of events, can be used to satisfy demand in
period t + 2. As such, we state that the replenish-
ment lead time Tr is ⌊Tp⌋ periods, i.e., 1 period in
our example.

3. REPLENISHMENT RULES



The retailers considered in this paper apply an
(r, S) policy with or without smoothing, meaning
amongst others they place an order at the end of
each period. Without smoothing, the order size is
such that the inventory position IP , defined as the
on-hand inventory plus the number of items on order
minus the backlogged items, equals some fixed S af-
ter the order is placed. In other words, the size of
the order Ot at the end of period t simply equals the
demand Dt observed during period t.

If smoothing is applied with parameter 0 < β < 1,
we do not order the difference between S and IP , but
instead only order β times S − IP . As will become
clear below, this does not imply that fewer items are
ordered in the long run, it simply means that some
items will be ordered at a later time. As shown in [3],
this rule is equivalent to stating that the size of the
order at the end of period t, denoted Ot, is given by

Ot = (1− β)Ot−1 + βDt,

where Dt is the demand observed by a retailer in pe-
riod t. Hence, setting β = 1 implies that we do not
smooth. This equation also shows that the mean or-
der size is still equal to the mean demand size E[D].
It is also easy to show [3] that the variance of the
order size V ar[O] equals

β

(2− β)
V ar[D],

meaning the variance decreases to zero as β ap-
proaches zero, where V ar[D] is the variance in the
demand. It is also possible to consider β values be-
tween 1 and 2, but this would amplify the variability
instead of dampening it.

The key question that our analytical model will an-
swer is how to select the base-stock level S such that
the fill-rate, a measure for the proportion of demands
that can be immediately delivered from the inventory
on hand, defined as

1−
expected number of backlogged items

expected demand
,

is sufficiently high. The level S is typically expressed
using the safety stock SS, defined as the average net
stock just before a replenishment arrives (where the
net stock equals the inventory on hand minus the
number of backlogged items). For a retailer that
smooths with parameter β, S and SS are related as
follows [3]

S = SS + (E[Tr] + 1)E[D] +
1− β

β
E[D],

where E[Tr] is the mean replenishment lead time.
Thus, a good policy will result in a smaller safety
stock SS, which implies a lower average storage cost
for the retailer.

4. THE MARKOV CHAIN
Both Markov chains developed in this section are a

generalization of the Markov chain introduced in [3],
for the system with a single retailer. The numerical

method to attain their stationary probability vector,
discussed in Section 5, is however very different.
From now on we will express all our variables in

time slots, where the length of a single slot equals half
of the mean production time, i.e., α(I−U)−1e/2, and
orders are placed by both retailers every d time slots.
Hence, the order size of retailer i at the end of period

t is now written as O
(i)
td and

O
(i)
td = (1− βi)O

(i)
(t−1)d + βiD

(i),

where βi is the smoothing parameter of retailer i, for
i = 1, 2. As the order size must be an integer, the

integer amount ordered O
(i∗)
td will equal ⌈O

(i)
td ⌉ with

probability O
(i)
td − ⌊O

(i)
td ⌋ and ⌊O

(i)
td ⌋ with probabil-

ity ⌈O
(i)
td ⌉ − O

(i)
td in case O

(i)
td is not an integer. This

guarantees that E[O
(i∗)
td ] = E[O

(i)
td ] = E[D(i)].

The joint order O∗
td of both retailers placed at time

td equals O
(1∗)
td +O

(2∗)
td . Recall, both these orders are

only delivered by the manufacturer when the joint
order has been produced. Next, define the following
random variables:

• tn: the time of the n-th observation point, which
we define as the n-th time slot during which the
server is busy,

• a(n): the arrival time of the joint order in ser-
vice at time tn,

• Bn: the age of the joint order in service at time
tn, expressed in time slots, i.e., Bn = tn − a(n),

• Cn: the number of items part of the joint order
in service that still need to start or complete
service at time tn,

• Sn: the service phase at time tn.

All events, such as arrivals, transfers from the wait-
ing line to the server, and service completions are
assumed to occur at instants immediately after the
discrete time epochs. This implies that the age of an
order in service at some time epoch tn is at least 1.
We start by introducing the Markov chain for the case
where both retailers smooth.

4.1 Both retailers smooth
It is clear that the stochastic process

(Bn, Cn, O
(1)
a(n), O

(2)
a(n), Sn)n≥0 forms a discrete time

Markov process on the state space N0×{(c, x1, x2)|c ∈

{1, . . . ,mD}, 1 ≤ xi ≤ m
(i)
D , i ∈ {1, 2}} × {1, 2}, as

the PH service requires only two phases. Note
that the process makes use of the order quantities

O
(i)

a(n)
instead of the integer values O

(i∗)

a(n)
. Since this

order quantity is a real number, the Markov process

(Bn, Cn, O
(1)
a(n), O

(2)
a(n), Sn)n≥0 has a continuous state

space which makes it very hard to find its steady
state vector.
Therefore, instead of keeping track of O

(i)
a(n) in an

exact manner, we will round it in a probabilistic way
to the nearest multiple of 1/g, where g ≥ 1 is an inte-
ger termed the granularity of the system. Clearly, the



larger g, the better the approximation. Hence, we ap-
proximate the Markov process above by the Markov

chain (Bn, Cn, O
g,(1)

a(n) , O
g,(2)

a(n) , Sn)n≥0 on the discrete

state space N0 × {(c, x1, x2)|c ∈ {1, . . . ,mD}, xi ∈

S
(i)
g , i ∈ {1, 2}} × {1, 2}, where S

(i)
g = {1, 1 + 1/g, 1 +

2/g, . . . ,m
(i)
D } and the quantity O

g,(i)
td evolves as fol-

lows. Let

x = (1− βi)O
g,(i)

(t−1)d + βiD
(i),

then O
g,(i)
td = x if x ∈ S

(i), otherwise it equals ⌈x⌉g
with probability g(x − ⌊x⌋g), or ⌊x⌋g with probabil-
ity g(⌈x⌉g − x), where ⌈x⌉g (⌊x⌋g) rounds up (down)

to the nearest element in S
(i)
g . Notice, by induction,

we have E[O
g,(i)
td ] = E[D(i)]. Using this probabilis-

tic rounding, we can easily compute the conditional

probabilities P [O
g,(i)
td = q′|O

g,(i)
(t−1)d = q], which we de-

note as p
(i)
g (q, q′), from D(i) (see [3, Eqn. (12)] for

details).
The transition matrix Pg of the Markov chain

(Bn, Cn, O
(1)
a(n), O

(2)
a(n), Sn)n≥0 is a GI/M/1-type

Markov chain [7] with the following structure,

Pg =

















Ad A0

...
. . .

Ad A0

Ad A0

. . .
. . .

















,

as Bn either increases by one if the same joint or-
der remains in service, or decreases by d − 1 if a
joint order is completed. Hence, there are d occur-
rences of Ad on the first block column. The size m
of the square matrices A0 and Ad is 2mDmg, with

mg =
∏2

i=1(m
(i)
D g − g + 1), which is typically such

that we cannot store the matrices A0 and Ad in
memory. Although we can eliminate close to 50%
of the states by removing the transient states with

Cn > ⌈O
(1)
a(n)⌉ + ⌈O

(2)
a(n)⌉, the size m remains prob-

lematic and this would slow down the numerical solu-
tion method presented in Section 5. A more detailed
discussion of the structure of A0 and Ad is given in
Section 5.1.

4.2 One retailer smooths
Assume without loss of generality that retailer one

smooths, while retailer two does not, i.e., β1 < 1 and
β2 = 1. In this case we can also rely on the Markov
chain defined above, but now there is no longer a need

to keep track of O
g,(2)
a(n) , as the orders of retailer two are

distributed according to D(2). This not only simpli-
fies the transition probabilities, but also considerably
reduces the time and memory requirements of the nu-
merical solution method introduced in Section 5. Al-
though storing the matrices A0 and Ad in memory
may no longer be problematic, a numerical approach
as presented in the next section outperforms the more
traditional approach that relies on computing the rate
matrix R [7] by a considerable margin.

5. NUMERICAL SOLUTION
The objective of this section is to introduce a nu-

merical method to compute the steady state distribu-
tion of the Markov chain introduced in Section 4.1 by
avoiding the need to store the matrices A0 and Ad.

5.1 Fast multiplication
In order to multiply the vector x = (x0, x1, . . .) with

Pg, where xi is a length m = 2mDmg vector, without
storing the matrices A0 or Ad, we will write Pg as the

sum of P
(0)
g + P

(d)
g =













A0

. . .

A0

. . .













+













Ad

...
Ad

. . .













,

and compute xPg as xP
(0)
g + xP

(d)
g . To express the

time complexity of these multiplications, assume xi =
0 for i ≥ n for some n (as will be the case in the next
subsection).
The matrix A0 corresponds to the case where the

same joint order remains in service, meaning Cn ei-
ther remains the same or decreases by one. Due to
the order of the random variables, the matrix A0 is
a bi-diagonal block Toeplitz matrix, with blocks of
size 2mg. The block appearing on the main diago-
nal equals I ⊗ U , as the production of the same item
continues in this case. The block below the main di-
agonal is I ⊗ u∗α, as the item is finished, but at least
one item of the joint order still needs to be produced.
Hence,

A0 =











I ⊗ U
I ⊗ u∗α I ⊗ U

. . .
. . .

I ⊗ u∗α I ⊗ U











,

where I is the size mg unity matrix and we have mD

blocks I ⊗U on the main diagonal. As the PH repre-
sentation is of order 2 (even in case of low variability),

we can multiply x with P
(0)
g in O(mn) time.

When multiplying with Ad, we first argue that Ad

can be written as

Ad = (e1 ⊗ (I ⊗ u∗))(W1 ⊗W2)(Y ⊗ α),

where e1 is a size mD column vector which equals one
in its first entry and zero elsewhere, Wi is a square

matrix of size m
(i)
D g − g + 1 and Y is a mg ×mgmD

matrix. To understand this decomposition we split
the transition in four steps. First, a service comple-
tion of an order must occur, meaning Cn must equal
one and the item in service must be completed. Thus,
the matrix (e1 ⊗ (I ⊗ u∗) describes this step. Next,
in step 2, we determine the new order size for each
retailer based on the previous order size (using the
granularity g). Let the (q, q′)-th entry of Wi equal

p
(i)
g (q, q′) (as defined in Section 4.1), for i = 1, 2. As

each retailer determines its next order size indepen-
dently, W1 ⊗W2 captures to step 2. To complete the



transition we need to determine the joint integer order
size given the individual granularity g order sizes of
both retailers (in step 3) and the initial service phase
of the first item part of the joint order (in step 4).
Step 4 is clearly determined by α, while step 3 cor-
responds to the matrix Y . A row of the matrix Y
contains either 1, 2 or 4 non-zero entries (depending
on whether the row corresponds to a case where both,
one or none of the granularity g orders are integers).

Thus, when multiplying x = (x0, x1, . . .) with P
(d)
g ,

each of the vectors xi is first reduced to a length mg

vector in O(nmg) time, because of (e1 ⊗ (I ⊗ u∗)).
A multiplication with W1 ⊗W2 is done in two steps.
First we multiply with (I⊗W2), which can be trivially

done in O((m
(2)
D g)2m

(1)
D g) = O(mgm

(2)
D g) for each

vector, followed by the multiplication with (W1 ⊗ I).
This latter multiplication can be rewritten as a multi-
plication with (I⊗W1) using the shuffle algorithm[5].

Hence, it can also be done in O(mgm
(1)
D g). Due to its

sparse structure, a multiplication with Y can be im-
plemented in O(mg) time. In conclusion, the overall

time required to multiply x with P
(d)
g can be writ-

ten as O(nmg(m
(1)
D + m

(2)
D )g) = O(nmg) and the

time needed to multiply x with Pg is therefore also
O(nmg). In practice, for g small, the multiplication

with P
(0)
g is more time demanding than the multipli-

cation with P
(d)
g and a considerable percentage of the

time is also spend on allocating memory.

5.2 The power method, the Gauss-Seidel
iteration and GMRES

To determine the steady state probability vector of
the transition matrix Pg we rely on the fast matrix
multiplication between a vector x and Pg introduced
above.

When combined with the power method, we ba-
sically start with some initial vector x(0) and de-
fine x(k + 1) = x(k)Pg until the infinity norm of
x(k + 1) − x(k) is smaller than some predefined ǫ1
(e.g., ǫ1 = 10−8). If we start from an empty system,
x(0) has only one nonzero component x0(0) of length
m and x(k) has k + 1 nonzero components x0(k) to
xk(k). Whenever some of the last components are
smaller than some predefined ǫ2, we reduce the length
of x(k) (by adding these components to the last com-
ponent larger than ǫ2). Notice, introducing ǫ2 is not
exactly equivalent to a truncation of the Markov chain
at some predefined level N . Instead we dynamically
truncate the vector x during the computation and its
length may still vary over time. The impact of both
ǫ1 used by the stopping criteria and ǫ2 used by the
dynamic truncation will be examined in Section 7.1.
Both these parameters will be used in a similar man-
ner for the other iterative schemes as well.

When applying the forward Gauss-Seidel iteration
[8], we compute x(k + 1) from x(k) by solving the
linear system

x(k + 1)(I − P (0)
g ) = x(k)P (d)

g ,

which can be done efficiently using forward substitu-

tion as (I − P
(0)
g ) is upper triangular. If x is an arbi-

trary stochastic vector, we initialize x(0) such that

it solves x(0)(I − P
(0)
g ) = x. As indicated in [8],

this Gauss-Seidel iteration is equivalent to a precon-

ditioned power method if we use (I−P
(0)
g ) as the pre-

conditioning matrix M . Notice, we can benefit from
the fast multiplications discussed in the previous sec-

tion when computing x(k)P
(d)
g as well as during the

forward substitution phase.
The GMRES method [9] computes an approximate

solution of the linear system (I − P ′
g)x = 0, by find-

ing a vector x(1) that minimizes
∥

∥(I − P ′
g)x

∥

∥

2
over

the set x(0) + K(I − P ′
g, r0, n). Here r0 is the resid-

ual of an initial solution x(0): r0 = −(I − P ′
g)x(0);

K(I − P ′
g, r0, n) is the Krylov subspace, i.e., the sub-

space spanned by the vectors {r0, (I−P ′
g)r0, . . . , (I−

P ′
g)

n−1r0}; and n is the dimension of the Krylov sub-
space [6]. To do this GMRES relies on the Arnoldi it-
eration to find an orthonormal basis Vn for the Krylov
subspace, such that V ′

n(I − P ′
g)Vn = Hn, where Hn

is an upper Hessenberg matrix of size n. Once Vn

and Hn have been obtained, a vector yn is found such

that J(y) =
∥

∥

∥βe1 − H̃ny
∥

∥

∥

2
is minimized. Here β is

the 2-norm of r0, e1 is the first column of the identity
matrix, and H̃n is an (n + 1) × n matrix whose first
n rows are identical to Hn, and its last row has one
nonzero element that also results from the Arnoldi
iteration. A new approximate solution x(1) is com-
puted as x(1) = x(0) + Vnyn. The process is then re-
peated with x(1) as x(0) until the difference between
two consecutive solutions is less than some predefined
ǫ. Although this algorithm is defined to solve linear
systems of the type Ax = b, with A nonsingular, it
can also be used to solve homogeneous systems with
A singular, as is the case with Markov chains [10].
The GMRES algorithm also benefits from the fast

multiplication discussed in the previous section. To
find the residual r0 at each iteration we need to
compute the product (I − P ′

g)x(0) = x(0) − P ′
gx(0).

Also, for the Arnoldi process we need to determine
the vectors vj = (I − P ′

g)
j−1r0, which are computed

iteratively, and require n − 1 products of the type
(I − P ′

g)vj−1 = vj−1 − P ′
gvj−1. As with the power

method, when analyzing several scenarios we can use
the final approximate solution of one scenario as the
starting solution for the next one to speed up conver-
gence.

6. THE SAFETY STOCK
The required safety stock SSi for each retailer to

guarantee a certain fill rate is one of the main perfor-
mance measures of this supply chain problem. The
derivation for the case where both retailers smooth
is nearly identical to the one presented in [3] and is
mainly included for reasons of completeness. As in-
dicated in Section 3, computing SSi is equivalent to
determining the base-stock Si provided that we know
the mean replenishment lead time E[Tr] (which equals
the floor of the production lead time Tp). The pro-
duction lead time distribution Tp is easy to obtain



from the steady state probability vector π of Pg as
follows. First define the length 2mg vectors πb(c) as
the steady state probabilities of being in a state with
Bn = b and Cn = c. Then, the probability of having
a production lead time of b slots equals

P [Tp = b] = ρπb(1)(e⊗ u∗)/(1/d)

for b > 0, where ρ = 2(E[D(1)] + E[D(2)])/d is the
load at the manufacturer and 1/d is the arrival rate
of the joint orders.

The fill rate is defined as 1 − E[(−NS)+]/E[D],
where NS is the net stock (i.e., inventory on hand
minus backlog) and x+ = max{0, x}. Hence,
E[(−NS)+] is the expected number of backlogged
items. Similar to [3, Section 5.1], we can show that

NSi = Si +
k

∑

j=1

D(i) +O
(i)
k /β, (1)

where k is the age, expressed in periods, of the joint
order in production at the manufacturer at the end

of a period and this joint order contains O
(i)
k items

for retailer i, for i = 1, 2. If k = 0, meaning the last

order left the queue before the end of the period, O
(i)
k

is the number of items ordered by retailer i in the
next joint order. Thus, the key step in determining
the required base-stock value Si, exists in computing

the joint probabilities p
(i)
k,q of having an order of age kd

in service when a period ends and the order in service
contains q items for retailer i, for i = 1, 2, k ≥ 0 and

q ∈ {1, . . . ,m
(i)
D }.

These joint probabilities can be readily obtained
from the steady state of the Markov chain introduced
in Section 4.1 as

p
(i)
k,q = ρdπ

(i)
kd (q)e,

for k > 0, where π
(i)
b (q) is the steady state vector for

the states with Bn = b and O
g,(i)
a(n) = q. For k = 0, we

note that an order finds the queue empty upon arrival
if the previous order had a lead time of at most d−1,
yielding

p
(i)
0,q = ρd

d−1
∑

b=1

∑

q1,q2,s

πb(1, q1, q2, s)u
∗
spg(qi, q),

where πb(c, q1, q2, s) is the steady state probability of
state (b, c, q1, q2, s).

If we wish to compute the joint probabilities p
(2)
k,q

from the Markov chain (Bn, Cn, O
g,(1)

a(n)
, Sn)n≥0 in case

only the first retailer smooths, things are somewhat
more involved when k > 0. For k = 0, we clearly have

p
(2)
0,q = P [Tp < d]P [D(2) = q].

For k > 0, we start by computing pw(q1, x), the prob-
ability that an order consisting of q1 items for retailer
1 has a waiting time of x > 0 slots. As the waiting
time x of an order with x > 0 equals the lead time of
the previous order minus the inter-arrival time d, we

find

pw(q1, x) =
ρd

π(q)

∑

q,s

πx+d(1, q, s)u
∗
spg(q, q1),

where πb(c, q, s) is the steady state probability of state
(b, c, q, s) and π(q) is the probability that an arbitrary
order contains q items for retailer 1.
Next, we determine the probabilities po(q1, q2, y)

that an arbitrary joint order consists of qi items for
retailer i and its production time equals y time slots.
These probabilities are readily obtained from pg(q, q

′)
and (α,U). Then,

pa(q1, q2, x) =
∑

y≥x

po(q1, q2, y)

2(E[D(1)] + E[D(2)])
,

is the probability that we find a joint order consist-
ing of qi items for retailer i in service at an arbitrary
moment when the server is busy, while the service of
this joint order started x time slots ago. Taking the
convolution over x between pw(q1, x) and pa(q1, q2, x)
and summing over q1, gives us the probability that the
order in service has an age of x time slots and consists
of q2 items for retailer 2, given that we observe the
system when the server is busy. From these probabil-

ities the joint probabilities p
(2)
k,q are readily found.

We can also compute the probabilities p
(2)
k,q from the

Markov chain in Section 4.1 by setting β2 = 1, but
this approach requires more time and considerably
more memory. As required, the numerical experi-
ments indicated a perfect agreement between both
approaches.

7. NUMERICAL EXAMPLES
In this section we illustrate the effect of smooth-

ing on the performance of the production/inventory
system. We focus on the safety stock as the main
measures of performance, and consider various sce-
narios for the demand distribution, the load and the
smoothing parameters β1 and β2. The required safety
stock in all the numerical examples guarantees a fill
rate of 0.98.
For the demand we consider three different dis-

tributions, let us call the three associated random
variables X, Y and Z, respectively. X is defined
as X = 1 + X̂, where X̂ is a Binomial distribu-
tion with parameters N − 1 and p = 1/2. Thus,
X takes vales on the set {1, . . . , N}. The expected
value and variance of X are E[X] = (N + 1)/2 and
Var(X) = (N − 1)/4. The second random variable Y
is uniformly distributed between 1 and N , and its ex-
pected value and variance are E[Y ] = (N + 1)/2 and
Var(Y ) = (N2 − 1)/12. The last random variable is
defined as P (Z = k) = (1+α)P (Y = k)−αP (X = k),
for k = 1, . . . , N . As a result Z has a U-shaped prob-
ability mass function, with E[Z] = (N + 1)/2 and
Var(Z) = (N2 − 1 + α(N2 − 3N + 2))/12. Clearly,
for Z to be a proper random variable, the value of α



Table 1: Accuracy and computation times of the power and Gauss-Seidel method for ǫ2 = 10−9

Power Gauss-Seidel

ǫ1 10−6 10−7 10−8 10−6 10−7 10−8

res. error 1.76E-5 1.68E-6 1.85E-7 2.14E-6 2.38E-7 2.56E-8

SS 0.64% 0.03% 0.01% 1.10% 0.17% 0.02%

E[Tr] 0.11% 0.02% 0.00% 0.63% 0.09% 0.01%

time (sec) 31 54 79 1.7 3.0 4.4

iter 804 1207 1636 21 34 49

Table 2: Accuracy and computation times of GMRES for ǫ2 = 10−9

GMRES - n=1 GMRES - n=3 GMRES - n=5

ǫ1 10−6 10−7 10−8 10−6 10−7 10−8 10−6 10−7 10−8

res. error 4.18E-5 5.31E-6 1.16E-7 2.79E-6 2.47E-7 2.48E-8 1.42E-6 1.33E-7 1.46E-8

SS 15.40% 8.01% 0.92% 9.70% 1.95% 0.29% 6.80% 1.23% 0.19%

E[Tr] 10.63% 4.70% 0.48% 6.86% 1.07% 0.14% 4.44% 0.64% 0.09%

time (sec) 15 34 105 21 64 290 38 170 446

iter 186 261 797 89 341 301 61 120 190

has to be such that P (Z = k) ≥ 0 for all k. In our
experiments we set N = 10, for which α can take val-
ues up to roughly 0.68. We choose α = 0.6 to make
Z highly variable. With this setup, Var(X) = 2.25,
Var(Y ) = 8.25 and Var(Z) = 8.25+6α = 11.85. Also,
setting the maximum demand size to N = 10, the size
of the square matrices A0 and AD ranges from 4000
(for g = 1) to 84640 (for g = 5).

As mentioned before, the mean production time is
set equal to 2, and for the experiments in this section
the standard deviation is also set to 2. The load is
set by adjusting d, the number of slots between two
orders placed by the retailers. In our setup we choose
d from the set {40, 34, 29, 26}, which generate loads
of roughly {0.55, 0.65, 0.76, 0.85}, respectively. We
will start by looking at the case where both retailers
use the same value of the smoothing parameters β1

and β2. Afterward we consider the case where these
parameters may differ. However, before we generate
any numerical results let us first evaluate the impact
of discretizing the state space (that is, the impact of
the granularity g) as well as the parameters ǫ1 and ǫ2
used in the stopping criteria and dynamic truncation
of the state space, respectively.

7.1 Computation times and accuracy
We start by looking at the accuracy and computa-

tion times required to obtain the results in the pa-
per with the power, Gauss-Seidel and GMRES meth-
ods when g = 1 (even though larger g values are
needed for β small as indicated below). Table 1 shows
the residual-error of the steady state vector, that is,
the norm of xPg − x, as well as the accuracy of SS
and E[Tr] for both the power and Gauss-Seidel meth-
ods when compared against a solution obtained with
ǫ1 = ǫ2 = 10−14 (by the power method). The ta-
ble also lists the computation times and the required

number of iterations. Table 2 provides the same data
for the GMRES method, where the size of the Krylov
subspace was set equal to 1, 3 and 5, These results cor-
responds to the example where the demand follows a
Binomial distribution, the load ρ = 0.85 (which is the
most demanding among the 4 loads considered), and
both retailers smooth with β1 = β2 = 0.8. All the ex-
periments were run on a PC with 4 cores at 2.93GHz
and 4GB of RAM. We observe that, for the same ǫ1,
the Gauss-Seidel method is far superior to both the
power method and GMRES, as it requires substan-
tially less time and has a similar accuracy than the
power method. This can be explained by the fact that
the Markov chain characterized by Pg typically makes
many consecutive upward transitions according to A0

followed by an occasional downward jump using Ad.
The accuracy of GMRES is quite poor for larger

ǫ1 values and is far worse than the power or Gauss-
Seidel method. As ǫ1 decreases the difference in ac-
curacy between GMRES and the other methods be-
comes smaller (and eventually negligible). GMRES is
faster than the power method for ǫ1 = 10−6 and when
n is one or three, but as indicated above, the accu-
racy of GMRES is poor in these cases. As stated in
Section 5.2 the Gauss-Seidel method may be regarded
as a preconditioned power method where the precon-

ditioning matrix M is equal to (I − P
(0)
g ). In prin-

ciple we can use the same preconditioning for GM-
RES, which should improve the performance of GM-
RES significantly. However, as GMRES is typically
inferior to the power method, it seems unlikely that
we can do better than the Gauss-Seidel method using

(I − P
(0)
g ) as a preconditioning matrix.

Next, let us have a look at the impact of the granu-
larity of g on the results for the Gauss-Seidel method
only, as the other methods are too time consuming
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Figure 2: Mean Lead Time E[Tr] vs. β = β1 = β2

for ρ = 0.85

for larger g values. We let g vary from 1 to 5 for a
load ρ = 0.85, while ǫ1 = 10−8 and ǫ2 = 10−9. Figure
1 depicts the required safety stock SS as a function
of β for the three demand distributions discussed be-
fore. These results indicate that for β close to one,
letting g = 1 suffices, however, for smaller β values
setting g = 1 may lead to a serious overestimation of
the required safety stock. Thus, in order to guarantee
an acceptable accuracy for smaller β values, we have
generated all the subsequent results with g = 5 (and
ǫ1 = 10−8 and ǫ2 = 10−9).

Finally, we would like to mention that a significant
amount of the computation time is devoted to allocat-
ing memory, due to the large sizes of the vectors, e.g.,
the size of the final vector x in Figure 1, for β = 0.8
and the binomial distribution, is 732000 (for g = 1)
and 15065920 (for g = 5). Since GMRES computes
n large vectors, it is more significantly affected by
the memory allocation delay. Also, the computation
times of all the methods are highly influenced by the
system parameters, especially by the load ρ and the
variance of the demand and processing times. Larger
values for these parameters imply longer computation
times and larger memory requirements.
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ρ = 0.85

7.2 Homogeneous smoothing
We start by looking at a system facing a load of

ρ = 0.85, and we consider values of β = β1 = β2

in the set {0.1, 0.2, . . . , 1}, and the three different de-
mands described above. The results are included in
Figure 2, where we observe that the mean replenish-
ment lead time decreases as a function of β, meaning
both retailers benefit from smoothing with respect to
the replenishment time. As expected, the lead time
reduction increases with the variability of the demand
distribution. This reduction in the lead time is key in
understanding the effect of β on the safety stock.
Figure 3 depicts the corresponding safety stock to

guarantee a fill rate of 0.98. The results indicate that
unless β is small, the required safety stock does not
increase much as a function of β, meaning both retail-
ers can perform a considerable amount of smoothing
without the need to increase their SS much. Note, as
β decreases the response of the retailer to a sudden
increase in the demand tends to become slower, which
intuitively should result in an increased SS. However,
the decrease in the lead time (partially) compensates
the slower response. When β becomes too small, the
reduction in the lead time is insufficient to avoid a sig-
nificant increase in the SS. Actually, when decreasing
β, starting in β = 1, the SS initially even decreases a
little in case of a more variable demand.
Similar results where obtained for lower load sce-

narios as well, the corresponding plot for an approx-
imate load of ρ = 0.65 (i.e., for d = 29) is given in
Figure 4. These results and insights are similar in
nature to the single retailer case (see [3]).

7.3 Heterogeneous smoothing
We start by considering the scenario where only one

retailer smooths, say retailer one. Thus, we assume
that β2 is fixed and equal to one, while β1 changes.
As expected, the mean lead time can be shown to de-
crease with β1. Figure 5 depicts the safety stock of
both retailers as a function of β1 for ρ = 0.85. The re-
sults indicate that the safety stock SS1 of retailer one
behaves very similar as in the homogeneous case (it
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Figure 5: Safety stock SS vs. β1 - β2 = 1 and

ρ = 0.85

is a fraction larger to be precise). Thus, the retailer
can still smooth his demand considerably without af-
fecting his safety stock too much. The safety stock of
the second retailer SS2 on the other hand decreases
slightly as a function of β1. This can be understood
by noting that the second retailer also benefits from
the reduced lead time, while he is more reactive to
a sudden increase in the demand as retailer one (as
β2 = 1).

In Figure 6 we consider the same example, but with
a reduced load ρ = 0.65. In this case we observe a
more remarkable results: the safety stock SS1 of re-
tailer one first decreases and is even below the safety
stock SS2 of retailer two for some β1 values. This may
seem counterintuitive at first as both retailers bene-
fit from the reduction in lead time, while the second
is still more reactive. To understand this, consider
Eqn. (1) for the netstock distribution NS of retailer

i. The last term O
(i)
k /β is clearly larger on average

for retailer one, but O
(1)
k is less variable than O

(2)
k as

the orders of retailer one are smoothed. Thus, if S1

is chosen larger than S2 to compensate for the larger
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ρ = 0.65
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ρ = 0.65

average of O
(i)
k /β, the lower variability of O

(i)
k might

indeed result in a less variable net stock (for large β)
and therefore in a smaller safety stock as well. Fig-
ure 7 shows that this is exactly what happens: S1

increases with β1, while S2 decreases as a function of
β1.
If we consider the selection of β1 and β2 in a game

theoretic setting, where the objective of retailer i ex-
ists in minimizing SSi, it is already clear from Figure
6 that (β1, β2) = (1, 1) is not always a Nash equilib-
rium1, as retailer one can decrease his safety stock
SS1 by selecting a β1 less than one.
Figures 8 and 9 depict the safety stock of both re-

tailers for β1, β2 ∈ {0.1, 0.15, 0.2 . . . , 1} when the de-
mand follows a Binomial distribution and the load
equals 0.8 and 0.55, respectively. These results in-
dicate that there exists a unique Nash equilibrium
(β1, β2) in these scenarios. More specifically, for
ρ = 0.8 and 0.55 the Nash equilibrium is located

1A common strategy is called a Nash equilibrium if
neither player can improve his objective by deviating
from the common strategy.
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in (β1, β2) = (1, 1) and (0.75, 0.75), respectively.
Numerical experiments not depicted here indicated
that there is also a unique Nash equilibrium (β1, β2)
when the load equals 0.65 and 0.76 (being (β1, β2) =
(0.5, 0.5) and (0.85, 0.85), respectively).
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