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Abstract

The geometry of the liquid region of a planetary core can effect core convection and magnetic field generation processes.

Varying the spherical shell radius ratio, v = ri / ro, illustrates differences between planets with differing core radius ratios as well

as how dynamo processes vary with time in an evolving planetary core. Here we study numerical models of thermally driven

dynamo action in a rotating shell of outer radius ro with electrically conducting Boussinesq fluid that surrounds an equally

conductive solid inner sphere of radius ri. Dynamo solutions are found for 0.15VvV0.65 at Ekman number E =3�10�4,

Prandtl number Pr =1, and magnetic Prandtl number Pm =5, with mechanically rigid, isothermal boundary conditions. In cases

with mildly supercritical Rayleigh numbers, Ra, convection occurs in the form of columnar plumes aligned with the rotation

axis. In thick-shelled cases (v =0.15), onset of axial dipolar dynamo action occurs at relatively high Ra by the action of a single

turbulent columnar plume. In thinner shells (vz0.25), multi-plume columnar convection generates strongly dipolar dynamo

fields near the onset of convection. Although some of our control parameters are far from planetary values, the outer boundary

Elsasser number, K, (a non-dimensional measure of magnetic field strength) for thinner shell cases is comparable to that for the

Earth’s core–mantle boundary and estimates for the dynamos of Jupiter and Saturn. In contrast, thick shell, single plume

dynamos produce relatively low Elsasser numbers at the outer shell boundary, possibly relevant to the magnetic field of

Mercury. For a single evolving planet, these results imply that a transition during early inner core growth from a single plume or

regional convective regime to a multi-plume or global convective regime could produce a significant increase in the exterior

global magnetic field intensity. Our calculations are consistent with observations of axial dipole dominated planetary magnetic

fields and support the concept of a geocentric axial dipolar field for much of Earth’s history.
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1. Introduction

Recent satellite observations have expanded the

number of planets in the solar system known to

have intrinsic magnetic fields (e.g., [1]). Self-sus-

tained, dipole-dominant dynamos are likely to exist

in the cores of Earth, Jupiter, Saturn, Ganymede and

perhaps Mercury [2]. For these planets, the dipole

axis appears to be aligned within approximately 108
of the planetary rotation axis. In contrast, fly-by

data from the Voyager II mission has shown that

Neptune and Uranus have dynamos that feature

strong non-dipole magnetic field components and a

dipole component that is inclined away from the

rotation axis [3]. Further satellite measurements sug-

gest that ancient dynamos existed on the moon and

Mars [4]. These observations raise the question as to

how the style and efficiency of dynamo generation

varies with evolving core geometry.

The radius ratio, v = ri / ro, where ri and ro are the

inner and outer core radii, respectively, is known

precisely for the Earth’s core: v =1220 km/3485

km ~– 0.35. However, at the present time, outer

core radii of other planetary bodies must be estimat-

ed via indirect geophysical modeling, and inner core

radii prove difficult to constrain [5,6]. Thus, core

radius ratio values are not known for any other

planets, and may vary greatly for different bodies.

In this study we carry out a systematic parameter

study of the effects of low to moderately high spher-

ical shell radius ratio, 0.15VvV0.65, to investigate

how spherical shell geometry can affect thermally

driven magnetic field generation.

Most numerical studies of dynamo action have

focused on understanding the magnetic field of the

Earth. In such models, the main features of the

Earth’s magnetic field can be reproduced, even

though the models suffer from severe resolution

limitations [43]. Nearly axial, columnar convection

produces high latitude flux patches that sum togeth-

er to produce a strong dipolar field at the outer shell

boundary [8,9]. These studies show that, in models

with strongly columnar convection, the magnetic

field is produced by an a2-dynamo mechanism in

which large-scale helical motions associated with

the convection columns generate the poloidal field

from the toroidal field as well as the toroidal field

from the poloidal field [10]. In models run at a
greater degree of convective supercriticality, strong

azimuthal flows develop that generate relatively

strong toroidal fields from poloidal fields via the

so-called N-effect. These models may be classified

as either aN- or a2N-dynamos [7,11].

The mode of thermal evolution of the Earth’s core

places strong constraints on inner core growth and on

the generation of buoyancy, which drives the geody-

namo. There has been considerable recent interest in

estimates of the age of the inner core, which range

from roughly 1 to 4 billion yr [12–16]. Two major

sources of buoyancy production at the inner core

boundary (ICB) are thought to be latent heating and

compositional buoyancy. The latter is due to the ex-

clusion of volatile elements, such as S or O, from the

inner core during solidification from the iron alloy

outer core. Buoyancy can be produced at the core

mantle boundary (CMB) via either secular cooling

or internal heating, which can come from long-lived

radiogenic isotopes, perhaps of 40K, within the core

[14–16].

The relative importance of heat sources driving

convection changes with time and inner core

growth. Secular cooling and internal heating would

be responsible for driving core convection prior to

inner core nucleation. As the inner core grows,

buoyancy production due to composition and latent

heating increases. Although internal heating is

thought to be the largest source of heat flux out

of the core, it is likely a minor source of the

buoyancy that drives convection, compared to com-

positional buoyancy production at the ICB [13,16–

18]. Nor does internal heating necessarily drive

convection near the CMB. Depending on the radial

density profile, heat transfer may occur via conduc-

tion across the CMB if the thermal gradient there is

subadiabatic. In the thermal evolution model of

Buffett et al. [17], the efficiency of both thermal

and compositional convection increases as the inner

core grows, with thermal convection processes dom-

inating early on. However, when the inner core

radius becomes greater than about 240 km, which

corresponds to a radius ratio vc0.07, composition-

al convection becomes more efficient than thermal

convection. This implies that buoyancy production

responsible for driving the geodynamo has been

concentrated near the ICB for much of the growth

of the inner core.
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Recent studies have begun to simulate behavior of

dynamos using various geometries that are applicable

to cases other than the present-day Earth. Drew [19]

and Morrison and Fearn [20] have studied dynamo

action in a 2.5D dynamo model where the outer core

radius and the planetary rotation rate are held constant

while the radius ratio varies. In particular, Morrison

and Fearn [20] investigate the range 0.025VvV0.5.
For a fixed outer boundary heat flux they find that

dynamo action is strongest for v =0.25 but ceases

close to v =0.5 as convection weakens due to thinning

of the fluid shell. They also find smaller radius ratio

cases to be more stable in time compared to thinner

shelled cases and that their solutions can be strongly

sensitive to the initial conditions.

Roberts and Glatzmaier [21] have carried out 3D

geodynamo simulations using three different radius

ratio values. Each case is subject to a different

thermo-compositional forcing strength, estimated to

approximate Earth’s core conditions at early, present

and late stages of core evolution. In their study these

three cases correspond to v =0.0875, 0.35 and 0.70,

respectively. Similar to Morrison and Fearn [20], they

find that the field is strongly dipolar and relatively

steady in time for the v =0.0875 case. In contrast, the

high radius ratio case features a more time-dependent

field with quadrupole and octopole terms that are closer

in amplitude to the still dominant dipole component.

Sakuraba and Kono [22] have numerically studied

internally heated dynamos with and without an inner

core. The case with an inner core is for an earth-like

geometry. They find that the two models produced

comparable, axially dipolar magnetic fields. The main

difference is that the case with an inner core produces

a more stable field than the case without an inner core.

Schubert and Zhang [23] have carried out kinemat-

ic dynamo calculations in which they vary both the

spherical shell radius ratio and the conductivity ratio

between the shell fluid and the solid conductor within

the inner shell. They find for v]0.5 that steady

kinematic dynamo action is only negligibly affected

by the inner core conductivity and volume. In con-

trast, oscillatory solutions occur for cases in which

vk0.5 and the electrical conductivity of the inner

core is less than 5 times that of the surrounding fluid.

In addition to the studies, outlined above, that

produce axial dipole fields, cases have been found

in which the field is inclined away from the axis of
rotation of the shell. In simulations of weakly super-

critical convection, Ishihara and Kida [24] find a

dipolar magnetic field may be generated with its

dipole axis lying in the equatorial plane. Aubert and

Wicht [25] have carried out a systematic parameter

study and find equatorial dynamos in the range

0.45VvV0.70 for cases with Rayleigh numbers be-

tween 1.1 and 1.5 Rac, in agreement with Ishihara and

Kida’s findings.

Even more complex fields have been produced in

previous numerical dynamo models. Grote and

Busse [26–28] find quadrupolar and oscillatory

hemispherical dynamos for cases with stress-free,

isothermal, electrically insulating boundary condi-

tions with partial internal heating. Stanley and Blox-

ham [29] produced high radius ratio, non-axial

dynamo models with strong quadrupole and octo-

pole terms. Their highly supercritical models make

use of stress-free boundary conditions, hyperdiffu-

sion, and a stably stratified, conducting fluid inner

core region. The precise mechanisms that produce

these complex field morphologies are not well un-

derstood at present.

Here we expand upon previous work on rotating

thermal convection in a self-gravitating shell over the

radius ratio range 0.10VvV0.92 [30]. In that study,

non-magnetic rotating convection calculations were

made at Ekman numbers of 10�3, 3�10�4 and

10�4, with the Prandtl number held fixed at unity.

We found that the variation of the critical Rayleigh

number for the onset of convection, Rac, could be

described by a single, separable function of Ekman

number and radius ratio. In this paper, we model

dynamo action in an electrically conducting Boussi-

nesq fluid as a function of spherical shell radius ratio.

In Section 2 we discuss the governing equations,

boundary conditions and numerical methods; Section

3 contains the results of the numerical simulations;

discussion of the results is presented in Section 4; the

findings are summarized in Section 5.
2. Theory and model

2.1. Governing equations

The governing equations for time-dependent,

three-dimensional, rotating thermal convection of
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an electrically conducting Boussinesq fluid are given

by

E

�
Bu

Bt
þ udqu�q2u

�

¼�qP�2ẑz�uþRaE

Pr

g rð Þ
go

r̂rTþ 1

Pm
ðq�BÞ�B

ð1Þ
BB

Bt
¼ q� u� Bð Þ þ 1

Pm
q2B ð2Þ

BT

Bt
þ udqT ¼ 1

Pr
q2T ð3Þ

qd u;Bð Þ ¼ 0 ð4Þ

These equations are solved simultaneously to deter-

mine the temperature field T, pressure field P, the

fluid velocity vector u and the magnetic field vector

B. The inner and outer spherical boundaries are

isothermal with a temperature difference DT main-

tained across the shell. No-slip boundary conditions

are employed and both boundaries are co-rotating at

angular velocity Xẑ. The solid region contained

within ri, which represents a planet’s solid inner

core, is assigned the same electrical conductivity as

the surrounding fluid. The region exterior to ro,

which corresponds to a planetary mantle, is electri-

cally insulating. The strength of gravity g(r) varies

linearly with radius, with go=g(ro). The thermal

expansion coefficient a, kinematic viscosity m, ther-
mal diffusivity K, magnetic diffusivity g, and plan-

etary rotation rate are X all held constant.

The equations have been non-dimensionalized

using the following scales: the viscous diffusion time-

scale sm =D
2 /m for time, fluid shell gap width

D = ro� ri for length, m /D for velocity, qmX for pres-

sure, DT for temperature and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qlogX

p
for magnetic

field where q is the fluid density and lo is the

magnetic permeability. The resulting non-dimensional

parameters are:

theRayleighnumber Ra ¼ agoDTD3

jm
; ð5Þ

theEkmannumber E ¼ m
XD2

; ð6Þ

thePrandtlnumber Pr ¼ m
j
; ð7Þ
themagneticPrandtlnumber Pm ¼ m
g
; ð8Þ

the radius ratio v ¼ ri

ro
; ð9Þ

and theElsasser number K ¼ B2

qlogX
d ð10Þ

The first five parameters are control inputs for each

calculation. The Elsasser number, which is the ratio of

the Lorentz to the Coriolis force, is an output param-

eter used in the analysis and discussion of the results.

In our calculations, the spherical shell gap width is

fixed to D =1. For a fixed value of D, the radii of the

inner and outer shells both increase with v, as

explained in detail in Al-Shamali et al. [30]. Using

this parameterization, constant E results in constant

non-dimensional strength of the rotational forces. In

contrast, for a planet with fixed outer core radius and a

growing inner core, the outer core shell thickness

varies as D = ro(1�v). Thus, E does not remain con-

stant but increases with v such that E =m /
[Xro

2(1�v)2] [20]. However, given that planetary

core convection is in the asymptotic low E regime

[31], even large changes in v are not likely to dramat-

ically change the style of convection. Thus, in our

simulations, which are not made in the low E asymp-

totic regime, we define E in terms of D so that the

strength of the Coriolis force does not vary with v.
Note also that we use the classical definition of the

Rayleigh number: Ra is defined in Eq. (5) in terms of

the fluid shell thickness, D, instead of the outer

boundary radius, ro. Later we will recast our results

in terms of a second Rayleigh number defined in

terms of ro, which corresponds more closely to the

case of a planet with a fixed core radius and a shrink-

ing fluid shell gap width.

Latent heat production, compositional convection,

and internal heating can be numerically modeled

using constant temperature or heat flux boundary

conditions and an additional non-dimensional source

term S in the energy equation. The sign and relative

strength of the source term can range from S =�1 for

purely compositional convection to S =+1 for internal

heating or secular cooling [32–34]. Purely composi-

tional convection, driven by solidification of the inner

core, has been modeled with S =�1, constant temper-

ature inner boundaries, and zero heat flux at the outer



Table 1

Grid parameters used in the calculations performed in this study a

E =3�10�4, Pr =1 and Pm =5

Radius ratio E =3�10�4 grid parameters

v nro nh n/ nri lmax

0.15 41 80 160 17 53

0.25 41 80 160 17 53

0.35 41 80 160 17 53

0.45 41 128 256 25 85

0.55 41 144 288 25 96

0.65 41 192 384 25 128

The first column shows the shell radius ratio, v. The following

columns respectively show the number of shell grid points in radius

r, colatitude h and longitude /, the radial grid points interior to the

inner shell and the maximum spherical harmonic degree.
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boundary [34]. For this set of conditions buoyancy is

produced near the inner boundary, with no buoyancy

production at the outer boundary. On the other hand,

pure internal heating may be implemented with S =1,

zero heat flux at the inner boundary and constant

temperature at the outer boundary. This insures that

buoyancy is produced preferentially near the outer

boundary. We can compare these two end-member

conditions for buoyancy production with the isother-

mal boundary heating case (implemented here) with

S =0 and constant DT between the inner and outer

boundaries. This results in buoyancy production at

both boundaries. Thus, seen in terms of numerical

modeling, boundary driven thermal convection lies

dynamically between pure compositional convection

and pure internal heat-driven convection. Considering

the level of uncertainty of the relative contribution of

buoyancy sources in the cores of the Earth and pla-

nets, this choice seems natural (albeit simple) for

planetary dynamo modeling.

2.2. The numerical model

The spherical dynamo code used here was devel-

oped originally by G. Glatzmaier and has been mod-

ified by U. Christensen and J. Wicht [35–37]. We are

presently using Wicht’s version MagIC2.0 [37]. The

numerical technique uses the spectral transform

method to solve Eqs. (1)–(4) simultaneously. The

fields are expanded in the radial direction using Che-

byshev polynomials and in the latitudinal and longi-

tudinal directions using spherical harmonics. The

Ekman, Prandtl and magnetic Prandtl numbers are

held fixed at E =3�10�4, Pr =1 and Pm =5, respec-

tively. No hyperdiffusivities are used in these full-

sphere calculations.

All the runs are initialized to zero velocity field

and a radial conductive temperature gradient (l=0,

m =0) with random thermal noise imposed as a per-

turbation. A seed magnetic field, containing both

poloidal and toroidal components, initializes each

case. The non-dimensional amplitude of the seed

field is |B| =K1/2=0.5. The poloidal part is an axial

dipole field (with spherical harmonic degree l=1,

m =0) produced by a radially uniform azimuthal cur-

rent density distribution. The toroidal part is anti-

symmetric across the equator (l =2, m =0) and varies

radially such that it is continuous across ri and
vanishes on the outer shell boundary as well as at

the origin.

The initial field can affect the final form of the

solution. We have carried out additional cases (not

presented here) in which we vary the morphology and

strength of the seed field and find that strong initial

fields facilitate the onset of dynamo action. Thus, to

obtain the minimum possible supercritical Rayleigh

number for the existence of strong field (i.e., K ~1)

dynamo action, a strong initial field is imposed. Typ-

ically, we find strong field dynamos at Ra relatively

near Rac that have nearly axial dipolar field morphol-

ogies, in basic agreement with Aubert and Wicht [25].

Several sets of calculations are performed using

different numerical grids in the radial r, latitudinal h
and azimuthal / directions. The number of radial grid

points, nro, are chosen such that there are at least 4

grid points within the Ekman boundary layer, defined

as dE =DE1/2. Since the shell thickness is set to D =1

in each calculation, the Ekman layer thickness is

independent of the radius ratio. Thus, the number of

radial grid levels is fixed at nro=41, which produces

the desired radial resolution. The number of grid

points in the longitudinal direction, n/, is chosen so

that a grid cell in the middle of an equatorial slice is

approximately square. The number of grid points in

the latitudinal direction, nh, is always chosen to be

half those in the longitudinal direction. Therefore, as

the radius ratio is increased, finer grids are needed in

the longitudinal and latitudinal directions, with max-

imum spherical harmonic degree lmax up to 128. The

grid parameters for calculations at each value of v are

given in Table 1.
t
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For each v, a value of Ra is chosen relatively close to

Rac, the critical value for the onset of non-magnetic

rotating convection. See Table 2 for the list of Ra

values calculated. If conditions are not favorable for

sustaining dynamo action, the magnetic energy in the

conducting fluid decays with time, as in the v=0.55,
Ra =1.5 Rac case shown in Fig. 1a. If the magnetic
Table 2

Characteristics of the full-sphere calculations performed in this

study at E =3�10�4, Pr =1 and Pm =5

Radius ratio Rayleigh number Calculation time

v Ra /106 Ra /Rac sm sg

0.15 0.64 2.0 4.8 0.69

0.15 0.96 3.0 10.7 1.55

0.15 1.28 4.0 3.7 0.53

0.15 1.60 5.0 2.8 0.41

0.15 1.91 6.0 3.6 0.52

+ 0.15 2.23 7.0 32.7 4.74

1 0.15 2.55 8.0 14.7 2.13

#1 0.15 2.87 9.0 8.6 1.25

1 0.15 3.19 10.0 8.5 1.23

0.25 0.73 3.0 7.7 0.86

0.25 0.98 4.0 .5 0.73

1 0.25 1.10 4.5 19.9 2.23

# 1 0.25 1.22 5.0 9.8 1.1

0.35 0.42 2.1 7.4 0.63

0.35 0.50 2.5 10.0 0.85

1 0.35 0.60 3.0 30.1 2.56

# 1 0.35 0.73 3.6 35.4 3.01

0.45 0.35 2.0 9.0 0.54

O 1 0.45 0.41 2.3 9.2 0.55

# 1 0.45 0.45 2.5 7.4 0.45

1 0.45 0.52 2.9 9.8 0.59

0.55 0.23 1.5 10.2 0.41

0.55 0.29 1.8 5.9 0.24

O 1 0.55 0.31 2.0 9.8 0.40

# 1 0.55 0.34 2.2 8.6 0.35

1 0.55 0.38 2.5 10.0 0.41

1 0.55 0.46 3.0 9.8 0.40

0.65 0.21 1.5 18.3 0.45

1 0.65 0.24 1.7 21.3 0.52

# 1 0.65 0.28 2.0 9.3 0.23

The 1st column shows the radius ratio of the fluid shell, while the 2nd

and 3rd columns show respectively the Rayleigh number used and its

supercriticality. The 4th and 5th columns show the calculation time

measured in units of viscous and magnetic diffusion time, respec-

tively. Bold rows with1 symbols are dynamo cases; others represent

failed dynamos. The special case of v =0.15 and Ra /Rac=7 (marked

by a +) is discussed in the text. Rows marked by a O are quasi-steady

dynamos. Rows marked with # symbols represent the fully devel-

oped, unsteady dynamo cases with Ra nearest Rac. These #-cases are

used in Figs. 3 and 4.
energy drops by three orders of magnitude, the run is

labeled a failed dynamo. The run is then repeated with

higher values of Ra until self-sustaining, supercritical

dynamo action is achieved, as shown in Fig. 1. To be

considered a dynamo, the magnetic energy must ob-

tain a statistically steady state. This typically occurs

within less than half a magnetic diffusion time, sg,

which varies with the viscous diffusion time as sg =sm

Pm / (1�v)2. As an example, for the v =0.55, Ra =2.0
Rac case sg=24.7 sm and the magnetic field becomes

statistically steady after about 4 sm, which is equiva-

lent to 0.16 sg.

In subsequent tables and figures, error bars repre-

sent the standard deviations of the relevant quantities

averaged over at least one viscous diffusion timescale

near the end of each simulation. Additionally, the

kinetic and magnetic energy spectra are monitored

during each calculation. The power in adequately

resolved calculations is required to drop by at least

two orders of magnitude from the maximum value in

each kinetic and magnetic energy spectrum.

In Table 2 quasi-steady dynamo cases are marked

by a O. Weakly supercritical dynamo action is quasi-

steady, barring longitudinal drift, and produces a rela-

tively weak magnetic field for radius ratios v =0.45 and
v=0.55. Kinetic and magnetic energy time series for

the quasi-steady v =0.55 case are shown in Fig. 1. The
cases are likely due to the fact that well-organized,

quasi-steady columnar convection efficiently generates

dynamo action at low degrees of supercriticality in

thinner shells. (However, we note that we did not find

a quasi-steady dynamo for v =0.65.) In contrast, lower
v dynamos have vigorous, chaotic flow near dynamo

onset due to the relatively high values of Ra /Rac.

The case marked by the + in Table 2 corresponds to

v=0.15 and Ra /Rac=7. This case is special in that,

after integrating for 4.74 magnetic diffusion time-

scales, the weak but strongly fluctuating magnetic

field has not decayed but also has not reached a

statistical steady state. This case seems to be very

close to the critical point of dynamo onset.

In general, increasing Ra just after the onset of

dynamo action leads to an increase in the strength and

time variation of the magnetic field. For yet higher Ra

values the magnetic field strength typically levels off;

these cases are referred to here as fully developed

dynamos. The fully developed dynamo cases with

Ra nearest Rac are marked by a # in Table 2. These
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Fig. 1. Time series of the magnetic energy density (top) and kinetic energy density (bottom) for v =0.55. Dimensionless time is scaled by the

viscous diffusion timescale. Three cases are shown: Ra =1.5�Rac is a subcritical case (dotted line); Ra =2.0�Rac is a marginally supercritical,

steady dynamo case (dashed line); Ra =2.5�Rac is a typical dynamo case (solid line).
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cases are used in subsequent figures and discussion of

dynamo characteristics as a function of radius ratio.
3. Results

Fig. 2a shows failed and successful dynamo solu-

tions. Solid circles mark the successful cases while

open circles mark failed dynamos (i.e., non-magnetic

solutions). The lowermost, thin solid curve represents

the critical Rayleigh number for rotating convection

Rac, which is given by

Rac ¼ E�c

�
C1

v2
þ C2

�
1� v
1þ v

�1=2�
; ð11Þ

where

c ¼ 1:16; C1 ¼ 0:21; C2 ¼ 22:4;

and E ¼ 3� 10�4 ð12Þ
[30]. The dashed lines represent 2 Rac, 3 Rac and so on.

For each v value, Rad denotes the minimumRa where a

dynamo solution is obtained and these values are fit by

the thicker solid line. The ratio Rad /Rac, which repre-

sents the supercriticality of convection at the onset of

dynamo action, is inversely proportional to v, as shown
in Fig. 2b. In particular, a large decrease in Rad /Rac
occurs between v =0.15 and v=0.25.

Fig. 3a shows the kinetic and magnetic energy

densities as a function of v for the lowest Ra fully

developed dynamo cases given in Table 2. The kinetic

energy densities decrease monotonically with increas-

ing v. This occurs because Rad /Rac is decreasing

with v, and nearly levels out for vz0.45. The mag-

netic energy density is small for the v =0.15 case and

peaks at v =0.45. This peak may be related to a peak

in the volume fraction of core fluid occupied by

convection columns, which also occurs near

v =0.45. Only at v=0.15 does the magnetic energy
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density drop below the kinetic energy density. We

note that the kinetic to magnetic energy ratio is

expected to be sensitive to our choice of the model

parameters (especially Pm). Nevertheless, the trend

with v may be relatively parameter independent.

The peak in magnetic energy may be compared to
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the results of Morrison and Fearn [20]. They obtained

a magnetic energy peak at v =0.25. Our results seem
to be in basic agreement with theirs, considering that

they covered a different range of v-values
(0.025bv b0.50), used a different thermal forcing,

and scaled the Ekman number differently.
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Fig. 3b shows the poloidal kinetic energy fraction

and the poloidal magnetic energy fraction averaged

over the fluid shell. In addition, the dipole magnetic

energy fraction on ro is displayed. Note in Fig. 3b

that the poloidal kinetic energy fraction increases

with v. This differs from the trend for the kinetic

energy density shown in Fig. 3a. Thus, a higher
Table 3

Time-averaged diagnostics as a function of radius ratio (v) and Rayleigh

v Ra /Rac KE ME MEr i

0.15 8.00 1307F190 536F229 358F262

0.15 9.00 1523F180 1239F326 1155F527

0.15 0.00 1559F324 1431F392 1588F738

0.25 4.50 413F62 1515F378 781F346

0.25 5.00 468F77 2080F390 1065F506

0.35 3.00 242F36 601F206 163F71

0.35 3.50 217F37 2824F556 1507F646

0.45 2.25 120F13 152F4 102F18

0.45 2.50 98F12 3253F354 2977F293

0.45 3.00 131F14 3215F301 2562F289

0.55 2.00 96F0 148F2 106F1

0.55 2.25 81F9 2853F339 2683F274

0.55 2.50 108F11 3002F377 2605F297

0.55 3.00 155F15 3300F271 2301F182

0.65 1.75 62F3 279F26 244F29

0.65 2.00 79F7 2048F154 1853F242

Columns three through eight show the kinetic energy density in the fluid s

energy in the solid inner conducting volume (MEri), magnetic dipole energ

colatitude of the magnetic dipole axis on the outer boundary (hdip), and

magnetic energy (MEIC /MET).
percentage of the kinetic energy is contained in

poloidal motions in higher radius ratio cases. In

our simulations, much of the poloidal kinetic energy

is contained in axial flow along convection columns.

The axial flow produces fluid helicity, which is

diagnostic of poloidal magnetic field generation.

Such poloidal motions are secondary to the primary

geostrophic flow, and may be driven by a variety of

sources, including Ekman pumping in the viscous

boundary layer and heterogeneity of thermal buoy-

ancy along convection columns [8].

Fig. 4 shows the ratio of the quadrupole to dipole

magnetic field components and the octopole to dipole

magnetic field components as a function of radius

ratio. The quadrupole–dipole ratio drops by approxi-

mately one order of magnitude over the range of v
investigated. The octopole to dipole ratio varies by

over two orders of magnitude. Both ratios show a

minimum at v=0.55. Thus, relative to the quadrupole

and octopole energies, the dipole energy is at a max-

imum at v =0.55.
Table 3 contains a variety of diagnostics from the

calculations. In addition to the kinetic and magnetic

energy densities of the working fluid, KE and ME,

this table contains the magnetic energy density within

ri, MEri, the magnetic dipole energy fraction, MDE,
number (Ra /Rac) for dynamo solutions

MDE MDEro hdip MEIC /MET

0.04F0.01 0.35F0.07 171F5 0.002F0.001

0.03F0.01 0.27F0.04 171F4 0.003F0.001

0.04 F0.01 0.28F0.06 174F4 0.004F0.002

0.09F0.01 0.57F0.06 174F3 0.008F0.003

0.10F0.02 0.56F0.06 175F3 0.008F0.003

0.10F0.03 0.68F0.05 180F0 0.012F0.003

0.21F0.03 0.68F0.05 174F3 0.023F0.007

0.25F0.05 0.87F0.04 180F0 0.067F0.010

0.38F0.02 0.74F0.03 177F1 0.092F0.011

0.33F0.02 0.71F0.03 174F3 0.080F0.011

0.37F0 0.89F0 180F0 0.143F0.002

0.41F0.02 0.75F0.04 178F1 0.190F0.026

0.37F0.02 0.72F0.04 177F1 0.176F0.033

0.28F0.01 0.66F0.03 177F2 0.140F0.015

0.45F0.02 0.82F0.01 179F0 0.331F0.019

0.38F0.02 0.73F0.04 179F0 0.342F0.031

hell (KE), magnetic energy density in the fluid shell (ME), magnetic

y fraction in the shell (MDE), and on the outer boundary (MDEro),

the ratio of inner conducting volume magnetic energy to the total
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the dipole energy fraction on the outer boundary,

MDro, the colatitude of the average dipole field

axis, hdip and the inner core magnetic energy fraction,

MEIC /MET. The average value of each quantity is

given along with its temporal standard deviation.

Figs. 5 and 6 show images of the flow and mag-

netic field patterns in the cases studied here. Fig. 5

shows equatorial slices of the temperature field, spher-

ical surface images of radial velocity at mid shell and

the radial magnetic field contours on ro. Panel 5a

shows results from the v =0.15, Ra /Rac=8.0 case.
Fig. 5. Images showing the temperature field in the equatorial plane (top)

outer boundary (right). (a) v =0.15, Ra =8 Rac; (b) v =0.25, Ra =4.5 Rac; (

Rac; (f) v =0.65, Ra =2 Rac. E =3�10�4 in all cases. Blue (red) indicat

magnetic field. (For interpretation of the references to colour in this figur
One turbulent plume occurs in this thick-shelled case.

The plume is strongly sheared in the retrograde direc-

tion by the zonal flow that exists outside the tangent

cylinder (i.e., the imaginary right cylinder parallel to

the axis of rotation and circumscribing the inner core

equator). Because the intersection of the tangent cyl-

inder with the outer shell radius occurs at high latitude

for small v, the single strong poloidal magnetic field

flux bundle is also located at high latitude. Thus the

time-averaged magnetic field on the outer boundary is

roughly axial.
, radial velocity at mid shell (left), and radial magnetic field on the

c) v =0.35, Ra =3.5 Rac; (d) v =0.45, Ra =3 Rac; (e) v =0.55, Ra =2
es low (high) temperature and high inward (outward) velocity and

e legend, the reader is referred to the web version of this article.)



Fig. 6. Axial vorticity and magnetic field lines for the cases shown in Fig. 5. Polar views in the top row and perspective views in the

bottom row. Prograde vorticity is represented by orange and yellow isosurfaces, retrograde vorticity by blue isosurfaces. Magnetic field

lines are colored according to the relative strength of the radial component such that red and blue indicate outward and inward magnetic

flux, respectively. Translucent red spheres indicate the inner shell boundary. The thick shell case (a and b) with v =0.15 and Ra =8 Rac,

shows a pair of vorticity isosurfaces associated with a single convective plume. The magnetic field is seen to be mostly toroidal in the

region of return flow, which lacks a plume. Poloidal field generation occurs within the vortices (see text for details). Onset of dynamo

action occurs at significantly lower Ra /Rac for thinner shell cases. For the v =0.35 case (c and d), dynamo onset is at Ra =3�Rac and for

v =0.65 (e and f) Ra =1.7�Rac. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Panels 5b through 5f show that the number of

columnar plumes arrayed just outside the tangent

cylinder is proportional to the radius ratio. Dynamo

action occurs closer to the critical Rayleigh number

as the radius ratio increases. The images in Fig. 6

show axial vorticity surfaces and magnetic field

lines. Comparing Figs. 5 and 6, note that the mag-

netic flux bundles on ro are associated with the

prograde (cyclonic) vortices, in agreement with pre-

vious simulations of a2-dynamos (e.g., [8,25]). In

the well-organized, high v cases, the magnetic field

diffuses into the large conducting solid inner core

region (rb ri). The large inner core in these cases

acts to smooth the field in both space and time.

Thus, increasingly strong axial dipole fields are

produced in the high v cases, as is evident in

Figs. 5f and 6f.
4. Discussion

4.1. Rayleigh number for variable spherical gap width

Up to this point we have used the standard Ray-

leigh number Ra based on shell gap thickness D given

by Eq. (5). However, for the case of a planet with

fixed core radius and a growing inner core, it is

appropriate to study convective onset where ro is

held fixed while v and D vary. In this case we may

rewrite Ra using D = ro(1�v) as:

Ra vð Þ ¼ Rapl 1� vð Þ3 ð13Þ

Rapl ¼ agoDTr3o
jm

: ð14Þ
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Fig. 7. Regime diagram for the planetary Rayleigh number Rapl (v),
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Fig. 8. Temperature isosurface and magnetic field lines for the

v =0.15, Ra =8 Rac case. The magnetic field lines are colored

according to the relative strength of the radial component such

that red and blue indicate outward and inward magnetic flux re

spectively. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this

article.)
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This modified Rayleigh number Rapl, is referred to

here as the bplanetary Rayleigh numberQ.
Fig. 7 shows Rapl as a function of v for failed

and sustained dynamo calculations. The figure is

similar to Fig. 2a with Rapl replacing Ra. Thus,

whereas Fig. 2a gives the Rayleigh number in terms

of a constant spherical shell gap width D, Fig. 7

gives the same results but with the Rayleigh number

rescaled by assuming the outer shell radius ro is

constant. In this representation, the onset of dynamo

action has a minimum Rapl value near v ~0.35.

However, it should be noted that the critical plan-

etary Rayleigh number for dynamo action does not

vary by more than a factor of 3 over the range

0.15VvV0.65.

4.2. Comparison of thick and thin shell cases

Rotating convection and dynamo generation pro-

cesses vary significantly with shell geometry. For

isothermal boundary conditions, convective plumes

originate on the inner shell boundary and a pair of

counter-rotating columnar vortices is associated with

each thermal plume. The number of columnar plumes

is proportional to the radius ratio, as shown in Figs. 5

and 6 as well as in Al-Shamali et al. [30] for non-

magnetic rotating convection. Thus, thicker shelled

models (with low radius ratios) have fewer convection

columns than thinner shelled models.
In the thick shell case with v =0.15, convection and
dynamo action are driven by upwelling from a single

localized region of the inner boundary. In contrast,

multiple plumes produce convection columns that

surround the inner boundary for cases with vz0.25.

The transition from single plume to multiple plume

dynamos is associated with the following major

changes in the dynamo characteristics: (1) an abrupt

decrease in Rad /Rac from v =0.15 to v =0.25. (2) A
reversal in the ratio of magnetic to kinetic energy;

kinetic energy is greater than the magnetic energy in

the single plume cases, whereas the magnetic energy

is greater than the kinetic energy for multiple plume

dynamos. (3) A strong increase in the dipole magnetic

energy relative to the total magnetic energy at the

outer boundary in cases with 0.15VvV0.45.
For the v =0.15 case, the poloidal field is still

produced by the helical flow within a single turbu-

lent convection column. However, the toroidal field

is generated mainly by large-scale azimuthal shear-

ing, the so-called N-effect. Thus, dynamo action in

the thick shell case is likely generated predominant-

ly by an aN-dynamo mechanism. To illustrate this,

Fig. 8 shows magnetic field lines and an isothermal

surface for v =0.15. The magnetic field lines are

dominantly toroidal outside the convective plume

region and are deflected into a poloidal morphology

by axial flow associated with the plume structure.

The dominantly toroidal field away from the main
-
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convective plume for v =0.15 can also be seen in

the left column of Fig. 7.

Our model produces relatively strong variations in

flow and detailed magnetic field morphology as a

function of v. An interesting feature of the results is

a large-scale regionally localized convective structure

at v=0.15. We can compare these results to those of

previous studies on the effect of radius ratio on dyna-

mo action. Some of our results are comparable to

those of Morrison and Fearn [20]. Although there

are several differences in their model formulation

from ours, the most significant is the difference in

thermal boundary conditions. We have used constant

temperature boundary conditions for all of our cases,

whereas Morrison and Fearn [20] used pure internal

heating. Their model results differ from ours most

significantly at v =0.15. In their model buoyancy

production occurs at the outer boundary whereas in

ours a strong plume rises from the inner boundary.

Furthermore, the dependence of changing v on their

flow and magnetic fields is relatively minor, whereas

v strongly affects our results.

Our results are more similar to those of Roberts

and Glatzmaier [21]. They found, as did we, that

strong flow and magnetic field structures are located

in proximity to the inner boundary tangent cylinder.

Their low radius ratio case features flow structures

extending from the inner to the outer boundary, com-

parable in cross section to our regional plume v =0.15
case. However, unlike our results, their flow and

magnetic fields have sources near the outer as well

as the inner boundary. This difference in results is

likely due mainly to two differences in the model

formulation. First, Roberts and Glatzmaier [21] used

a combination of buoyancy sources, including both

secular cooling effects as well as ICB buoyancy pro-

duction — the effect of secular cooling explains the

relatively strong convection sources near the outer

boundary. Second, our lowest radius ratio v =0.15 is

significantly larger than that of their small inner core

case (v =0.0875).
Aubert and Wicht [25] also presented models with

a range of relatively large radius ratios (0.45V
vV0.70). They used a large magnetic Prandtl number

(Pm =14.3) and obtained equatorial dipole dynamos at

Ra very near Rac, and axial dipoles at higher Ra /Rac.

We do not find equatorial dipoles for our models. This

is likely due our choice of a lower magnetic Prandtl
number (Pm =5), so that we first obtain dynamos at

higher Ra /Rac. This is consistent with the axial

dipoles found at similar values of Ra /Rac by Aubert

and Wicht [25].

4.3. Applications to magnetic field observations

In applying the results of these calculations to

planetary dynamos we emphasize that some of pa-

rameter values used here are far from those expected

for planetary dynamos. For example, despite a var-

iability of 14 orders of magnitude in estimates of the

outer core viscosity [38], the Ekman number for the

Earth’s core is typically estimated as E]10�12.

Given that the critical Rayleigh number for rotating

convection scales as E�4/3, a corresponding estimate

for the minimum Rayleigh number in the Earth’s

core is Rak1016. In addition, the magnetic Prandtl

number is typically estimated to be less than unity.

Thus, by using E =3�10�4, Ra ~106 and Pm =5,

we have placed rather severe restrictions on the

parameterization of these dynamo models. Further-

more, as discussed in Section 2.1, we use isothermal

boundary conditions and do not model the possible

effects of volumetric (radiogenic) heat generation or

secular cooling. Nevertheless, previous models with

comparably restrictive model parameters have repro-

duced many of the first order features of Earth’s

magnetic field (e.g. [34]). While the limitations of

the dynamo models presented here must be kept in

mind, it seems reasonable to apply our results to

observations of magnetic fields of the earth and

planets.

In our modeling results axial dipole fields occur

over a broad range of radius ratios. Additionally we

find that the critical planetary Rayleigh number for

dynamo action Rad
pl varies by less than a factor of

three over the range 0.15VvV0.65, with a minimum

Rad
pl at an bEarth-likeQ v =0.35. These findings are

consistent with the growing list of solar system bodies

that are known to have dynamo-generated axially

aligned and dipole-dominant magnetic fields [2].

Table 4 contains Elsasser numbers K and Kro,

averaged over the fluid volume and averaged over

the outer boundary, respectively, assuming a fixed

outer core radius ro and variable v. The values

given in Table 4 are calculated from the fully devel-

oped dynamo cases marked by a # in Table 2. The



Table 4

Elsasser numbers for different v with ro fixed, averaged over the

fluid volume (K) and averaged over the outer shell surface (Kro)

v K Kro

0.15 2.08F0.93 0.010F0.006

0.25 4.10F0.79 0.034F0.009

0.35 6.26F1.42 0.12F0.04

0.45 8.87F0.97 0.37F0.05

0.55 9.28F1.22 0.47F0.06

0.65 8.58F0.56 0.51F0.04

The cases are fully developed dynamos near the onset of dynamo

action (marked by # in Table 2).
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internal Elsasser numbers, K, range roughly from two

to ten. Thus, our solutions represent strong field dy-

namos (in the sense that Kk1). In contrast, the outer

surface Elsasser number values, Kro, are roughly one

to two orders of magnitude less than the

corresponding K values. For the Earth-like v value

of 0.35, we find Kro=0.12, which is not far from the

Elsasser number for the geomagnetic field, downward

continued to the core–mantle boundary, Kcmb ~– 0.3

[2].

We find that the transition from a single convective

plume to multiple plumes (with increasing v) is ac-

companied by a decrease in Rad /Rac, and a strong

increase in Elsasser number at the outer shell bound-

ary, Kro. The increase in the internal Elsasser number,

K, is less pronounced than that of Kro. Indeed, K
increases by a factor of less than five over the full

range 0.15VvV0.65, whereas Kro increases by a

factor of fifty. Although our models generate strong

internal magnetic fields, the external magnetic fields

range from weak for thick shells (Kro=0.01 for

v =0.15) to moderate for thin shells (Kro=0.51 for

v =0.65).
Mariner 10 fly-by data provided an estimated

dipole moment of roughly 300 nT RM
3 for Mercury’s

magnetic field [39,40]. Thus, this field appears to be

weak in the sense that its planetary surface Elsasser

number is Kro]10�4. Although it is often assumed

that Mercury must have a thin shell core geometry,

thermal evolution models show that its present core

geometry sensitively depends on its mantle convec-

tion history and core chemistry [6]. Thus, Mercury

may have a sulfur-rich, largely molten core and its

weak axially dipolar field may be produced by a

localized convection pattern similar to the v =0.15
single plume case described here. However, for cases
with vz0.55 the magnetic energy density and rela-

tive dipole energy both weaken. This suggests that

similar thin shell models, existing outside of our

present range of investigation, may also generate

weak external magnetic fields. Assuming that such

thin shell cases exist and differ in detailed field

structure on ro, it may be possible to determine

Mercury’s core geometry via detailed satellite mag-

netic field measurements.

Our results may also be applied to the Earth’s

paleomagnetic field. Here the outer boundary Elsasser

number is used as a proxy for relative geomagnetic

paleointensity:
ffiffiffiffiffiffiffi
Kro

p
~jBj. For the v =0.15 the value

of Kro is an order of magnitude less than that for

v=0.35. This implies that the magnetic paleointensity

could increase by a factor of ~3 during the epoch of

small inner core radius. Estimation of Archean geo-

magnetic field intensity is difficult and uncertain [41].

Nevertheless, based on paleointensity measurements

on 3.5 Ga Komati Formation lavas, Hale [42] esti-

mated the strength of the Earth’s field to have been

roughly 1/10 its present-day value. Our results imply

that a low intensity paleomagnetic field could have

been caused by localized core convection in the pres-

ence of a small inner core.
5. Conclusions

We have used numerical models to investigate the

transition from non-magnetic rotating convection to

self-sustaining dynamo action over the range

0.15VvV0.65, using isothermal boundary condi-

tions, a conducting inner core and strong magnetic

field initial conditions. We find that the ratio of the

Rayleigh number for the onset of dynamo action and

the critical Rayleigh number for rotating convection,

Rad /Rac, varies by a factor of 15 over this range,

monotonically decreasing with increasing v. Thus,

dynamo action is generated more efficiently by

mildly supercritical rotating convection in a thin

shell than in a thick shell. All of the dynamo solu-

tions have an axial dipolar field morphology. For the

thickest shell geometry, v =0.15, a single turbulent

plume dynamo is obtained. The strength of the

external magnetic field increases with v. With in-

creasing v, the larger number of columnar vortices

acts to generate more net axial flow, which generates
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greater poloidal magnetic field intensity. In addition,

the increasing size of the inner conducting volume

reinforces the external axisymmetric axial field. Our

numerical models result in axial dipole fields occur-

ring over a relatively large range of radius ratios.

This is consistent with the predominance of approx-

imately axial dipoles in planetary magnetic field

observations. As a planet’s solid inner core grows,

a transition may occur from regionally localized

plume structures to convection that more uniformly

fills the fluid outer core. Such a transition could be

accompanied by an increase in the external magnetic

field. Future studies of low radius ratio dynamo

action using different boundary conditions and in-

cluding the effects of secular cooling, internal heat

sources and compositional buoyancy will help con-

strain the dynamics in this transitional regime.
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