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Doctor José B. Cruz Jr.

Approved by

Adviser

Graduate Program in
Electrical and Computer

Engineering



ABSTRACT

An important concept from theoretical ecology is the “ideal free distribution”

(IFD). This dissertation analyzes the IFD idea from three different perspectives. First,

we start by defining a general class of “suitability” functions, and show that the IFD

is an evolutionarily stable strategy (ESS), and a global optimum point. We introduce

the “replicator dynamics” for the IFD and show that they provide an allocation

strategy that is guaranteed to achieve the IFD. We show how this allocation strategy

can achieve an IFD for a multizone temperature control problem that corresponds

to achieving the maximum uniform temperature on a grid under a multivariable

saturation constraint. Then, using a bioinspired methodology, we view an animal as

a software agent, the foraging landscape as a spatial layout of temperature zones, and

nutrients as errors between the desired and actual temperatures in the zones. Using

foraging theory, we define a decision strategy for the agent that has an objective of

reducing the temperature errors in order to track a desired temperature. We show

that the use of multiple agents defines a distributed controller that can equilibrate

the temperatures in the zones in spite of interzone, ambient, and network effects.

Finally, a model of honey bee social foraging is introduced to create an algorithm

that solves a class of optimal resource allocation problems. We prove that if several

such algorithms compete in the same problem domain, the strategy they use is an
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ESS but for finite populations. Moreover, for a single or multiple hives we prove that

the allocation strategy is globally optimal.
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Adolfo Recio, Juan Pablo González, Jesús López, and also other friends and colleagues

for their help during my studies, and their inputs in some of the chapters of this

document.

vi



VITA

May 7, 1974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Born - Bogotá, Colombia
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The concept of ideal free distribution (IFD) was originally introduced in [1]. For

many years, this concept has been used to analyze how animals distribute themselves

across different habitats. These habitats have different characteristics (e.g., one habi-

tat might have a higher nutrient input rate than another), but animals tend to reach

an equilibrium point where each has the same correlate of fitness (e.g., consumption

rate). The term “ideal” means that the animals can perfectly sense the quality of

all habitats and seek to maximize the suitability of the habitat they are in, and the

term “free” means that the animals can go to any habitat. In [2, 3] the authors sur-

vey the various extensions to the IFD (e.g., the interference model [4] and standing

crop idea [5]), and overview the experimental biological evidence that supports these

models. In this dissertation we study three different cases where the IFD is achieved,

and we provide analytical methods to study this important concept from theoretical

ecology as well as some engineering applications.
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1.2 Thesis Summary

The dissertation is divided in three main parts. In Chapter 2 we extend the

theory of the IFD by providing methods to analytically find the distribution for a

relatively general class of “suitability” functions. We show that the resulting IFD is

a Nash equilibrium and an evolutionarily stable strategy (ESS). Moreover, we show

that for a certain cost function it is a global optimum point. We introduce the

“replicator dynamics” for the IFD and show that they provide an allocation strategy

that is guaranteed to achieve the IFD. Finally, we show how this allocation strategy

can achieve an IFD for a multizone temperature control problem that corresponds

to achieving the maximum uniform temperature on a grid under a multivariable

saturation constraint.

Models from behavioral ecology, specifically foraging theory, are used to describe

the decisions an animal forager must make in order to maximize its rate of energy

gain and thereby improve its survival probability. Using a bioinspired methodology, in

Chapter 3 we view an animal as a software agent, the foraging landscape as a spatial

layout of temperature zones, and nutrients as errors between the desired and actual

temperatures in the zones. Then, using foraging theory, we define a decision strategy

for the agent that has an objective of reducing the temperature errors in order to track

a desired temperature. We describe an implementation of a multizone temperature

experiment, and show that the use of multiple agents defines a distributed controller

that can equilibrate the temperatures in the zones in spite of interzone, ambient, and

network effects. We discuss relations to ideas from theoretical ecology, and identify a

number of promising research directions.
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Finally, in Chapter 4, a model of honey bee social foraging is introduced to create

an algorithm that solves a class of optimal resource allocation problems. We prove

that if several such algorithms (“hives”) compete in the same problem domain, the

strategy they use is a Nash equilibirium and an evolutionarily stable strategy. More-

over, for a single or multiple hives we prove that the allocation strategy is globally

optimal. To illustrate the practical utility of the theoretical results and algorithm we

show how it can solve a dynamic voltage allocation problem to achieve a maximum

uniformly elevated temperature in an interconnected grid of temperature zones.
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CHAPTER 2

OPTIMALITY, STABILITY, AND ALLOCATION
STRATEGIES FOR THE IDEAL FREE DISTRIBUTION

2.1 Introduction

We start our dissertation by studying the IFD for a general class of correlates of

fitness called suitability functions. This general class of suitability functions covers

the ones studied in [6, 7] for the “continuous-input” model, and also includes the case

of “interference” [4, 7, 8]. We also study a suitability function studied in [1]. For these

suitability functions, we prove the equivalence of the habitat [6, 7] and input matching

rules [4, 9], an equivalence only previously recognized to hold for one special class of

suitability functions [4, 2]. We introduce the concept of an individual animal with a

fitness and explain the type of equivalences that hold between habitat suitability and

individual animal fitness equalization. Then we show that the treatment of a more

general class of suitability functions allows us to characterize and analyze the “ideal

dominance distribution” [1], something that has not been done in the literature to

date [3]. Next, we explain how the IFD is a Nash equilibrium and an evolutionarily

stable strategy (ESS) [10] for the case of a “game against the field” [11] for our ex-

panded set of suitability functions. This means that in a large population of animals,
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whose mean population strategy is an IFD, no mutant animal strategy can invade

the population. While this means that the IFD is locally optimal in a game-theoretic

sense (i.e., unilateral strategy deviations by a single animal are not profitable for that

animal), here we show that the IFD possesses much stronger optimality properties.

We show how to model a group of animals all simultaneously seeking to maximize

their fitness as a “minimax” optimization problem. For this problem, we prove that

the IFD is a global optimum point. This means that even if an arbitrary number

of animals deviate so that the distribution is not an IFD, then there can be an ar-

bitrary number of animals who need to change strategies to maximize their fitness.

Moreover, it means that there is no other animal distribution where all the animals

can simultaneously maximize their fitness. Our results bear some relationships to

the work in [12] but here we consider a different (and more generic) class of suit-

ability functions, and a “nonlinear” game against the field. Finally, we study how

evolutionary dynamics can represent the animal allocation process over long time

periods. In particular, we introduce the “replicator dynamics” [13] for the animal

distribution “population game” [14, 15] and show how it relates to a steepest descent

allocation strategy. For this model, natural selection according to differential fitness

is the mechanism underlying the animal allocation and animal strategy mutations

are represented by perturbations in the population “strategy mix” [14]. We show

that the IFD is an equilibrium of the replicator dynamics, and via Lyapunov stability

analysis show that the IFD is asymptotically stable for our general class of suitability

functions (thereby extending earlier such analysis [13, 14, 15]). This means that the

population will recover from perturbations (mutations) off the IFD equilibrium and

the population’s strategy mix dynamics eliminate mutants that are different from the

5



IFD so that evolution leads to the maintenance of an IFD strategy. We show one case

where the IFD is exponentially stable so that mutant rejection is fast, and relate the

size of the population to the rate of rejection of mutant strategies.

In the last section of this chapter we use the theory to solve a challenging en-

gineering problem that involves achieving temperature control for multiple zones of

a planar temperature grid, in spite of limited current available to drive the heaters

and significant ambient and inter-zone effects. This problem can be seen as a dis-

tributed multivariable “dynamic resource allocation” problem because we want to

split some quantity (current or voltage) that we have a limited amount of, and ded-

icate appropriate proportions of it to optimize some quantity of interest (quality of

regulation). The allocations are inputs to a dynamical system and its response deter-

mines the quality of the allocation. The control goal could be a standard regulation

or tracking objective (e.g., making all zones have the same given temperature), or a

nontraditional objective like reaching the maximum uniform temperature across the

entire grid. Control goals like these arise in the context of a variety of commercial

applications (e.g., building temperature control) industrial systems. For instance,

in semiconductor processing, one challenge is to achieve a uniform temperature on

a plate [16]. Others [17] study distributed control of wafer temperature via multi-

zone rapid thermal processing systems. In related work, the authors of [18] describe

a multizone space heating system that maintains a desired temperature in different

zones. Another application where the type of multizone temperature control that we

study is very important is in personal computers. In [19], the author describes several

current strategies used to solve this problem. In addition to such strategies, several

other methods are currently available for distributed control design when set-point
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regulation or tracking is the objective objective. For instance, in [20] the authors

show how systems with a spatial interconnection topology can be controlled using

conditions that can be expressed as linear matrix inequalities.

Unlike the work outlined above, we seek to confront the problem of the allocation

of a limited amount of current (a multivariable saturation nonlinearity) in order to

achieve a maximum uniform temperature on a planar grid, which is a true dynamic

resource allocation problem. Dynamic resource allocation problems are found in a

variety of applications beyond temperature control and are currently one of the most

important challenges in the control systems area [21]. Current work on allocation

for dynamical systems has its roots in the extensive literature that focuses on solv-

ing “static” resource allocation problems in optimization theory [22]. Unfortunately

such methods do not directly apply to a dynamic resource allocation problem like

the one we are confronting since they neither consider feedback-based allocation nor

simultaneous constraints involving differential equations, equalities, and inequalities.

An excellent example of innovative work in resource allocation for dynamical sys-

tems is found in [23] where the authors define a model for an air-jet system that

describes the relationship between macro and micro-level forces, and derive dynamic

allocations that can be mapped to, and configured for, different levels in a control hi-

erarchy. Three other examples of dynamic resource allocation challenges are provided

in [24], one for scheduling, one for temperature control, and the other for levitating

balls in tubes (a university educational experiment). Here, we show how to apply the

IFD strategy described in Section 2.5 to simultaneously satisfy current limitations and

try to minimize energy use for a version of the planar temperature control problem
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in [24]. We provide data from an experimental testbed to demonstrate the dynami-

cal behavior and effectiveness of the method, particularly for achieving disturbance

rejection. In this way, we show one case where the IFD theoretical framework we

establish in this chapter can be used to provide a methodology to design strategies

for dynamic resource allocation. Due to the generic nature of the theory we developed

in this chapter it is likely that other applications can follow (e.g., for other applica-

tions in dynamic resource allocation see [24], or for potential uses of the IFD in other

engineering applications see [25, 26]).

2.2 The Ideal Free Distribution

Suppose that there is a set H = {1, 2, . . . , N} of N disjoint habitats in an envi-

ronment that are indexed by i = 1, 2, . . . , N . Let the continuous variable xi(t) ∈ R+

be the amount of animals in the ith habitat at time t ≥ 0, where R+ = [0,∞). Let

x = [x1, x2, . . . , xN ]� ∈ R
N
+ . Suppose that

∑N
j=1 xj = P , where P > 0 is a constant

for all time t, i.e., the amount of animals in the environment is constant. We say that

a habitat i is truncated if xi = 0, and is inhabited if xi > 0 for some i = 1, 2, . . . , N .

2.2.1 A General Class of Suitability Functions

Suppose that bi ≥ 0, is a constant that we sometimes interpret as a fixed number

of resident animals in the ith habitat, and ci > 0 is a constant associated with the

ith habitat. Assume that
∑N

j=1 aj > 0 and ai ≥ 0 for all i = 1, 2, . . . , N . Let

H∗ = {i ∈ H : ai > 0} so j ∈ H −H∗ have aj = 0. Let m > 0 be a constant. Let si

be the suitability function for the ith habitat, and in this case it is defined as

si =
ai

(cixi + bi)m
(2.1)
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In the literature, the most common function that has been used to describe the

“continuous-input model” [2, 3] is a function that assumes that bi = 0, and ci = m =

1, so

si =
ai

xi

(2.2)

Then, if ai is in nutrients per second, ai

xi
is each animal’s consumption rate at habitat

i. This suitability is typically assumed to be a correlate of Darwinian fitness so

sometimes it is called the fitness of an animal at habitat i. In this case, it is said

that animals distribute in a way that they all achieve equal fitness. Below, in Section

2.2.4 we will derive an explicit relationship between habitat suitability and individual

animal fitness for the general case since strictly speaking these two are different.

In any case, the IFD is achieved via a sequential allocation process that places more

(fewer) animals in higher (lower, respectively) suitability habitats until the suitability

functions and fitnesses equalize at the IFD. That is, the IFD is achieved via a process

where each animal simultaneously maximizes its own fitness.

Another popular suitability function found in the literature is the one that de-

scribes the “interference model” [4, 7, 8]. For it, in (2.1) let ci = 1 and bi = 0,

so

si =
ai

xm
i

(2.3)

Notice that in the case of (2.3), if we use the fact that at the IFD all the habitats

will end up with the same suitability, then we can transform the interference model

into a suitability function that looks like the standard one in (2.2) by taking the mth

root on the right-hand-side of (2.3). In this case, we will end up with a suitability
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function of the form si =
a

1
m
i

xi
. The animals will achieve an IFD, but they will not be

able to determine precisely the quality of each habitat if they do not know m.

Since Equation (2.1) is more general than the ones in (2.2) and (2.3), our analysis

is based on (2.1). The analysis starts by studying the habitat and input matching

rules [6, 7, 9, 4]. Then, we define the ideal dominance distribution (IDD), and finally

we define the idea of individual animal fitness equalization that will be useful for the

game-theoretic and optimality analysis of the IFD.

2.2.2 Habitat and Input Matching Rules

The “habitat matching rule” [6, 7] says that at the IFD, the animals will distribute

so that for each i, j ∈ H∗,

ai(cjxj + bj)
m = aj(cixi + bi)

m (2.4)

Since all the terms in (2.4) are positive, we can write this equation as

a
1
m
i (cjxj + bj) = a

1
m
j (cixi + bi)

which is equivalent to

cixi + bi
cjxj + bj

=
a

1
m
i

a
1
m
j

If we assume that ci is a scaling factor, and that bi is the number of fixed animals in

the ith habitat, we can say that what we have is the relative proportion of animals

between two different habitats should be equal to some scaled relative proportion of

the quality between the same habitats. Equation (2.4) can also be written as

a
1
m
j

cjxj + bj
=

a
1
m
i

cixi + bi
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So for the rest of our analysis, we assume that the suitability function in (2.1) is

written as

si =
a

1
m
i

cixi + bi
(2.5)

For (2.2), the habitat matching rule simply says that nutrient consumption rates are

equal at all habitats.

Another common approach to characterize the IFD is to use the “input matching

rule” [4, 9] which says the animals distribute so that for all i ∈ H∗,

cixi + bi∑N
j=1 cjxj + bj

=
a

1
m
i∑N

j=1 a
1
m
j

(2.6)

This equation can be written as

a
1
m
i

cixi + bi
=

∑N
j=1 a

1
m
j∑N

j=1 cjxj + bj

Notice that for (2.2) what we obtain is that the overall consumption rate in the

environment, characterized by the right-hand-side of this equation (with ci = m = 1,

and bi = 0) has to be equal to the consumption rate in any single habitat. The IFD

is achieved via a sequential allocation process that places more animals in habitats

that have si >
∑N

j=1 aj∑N
j=1 xj

which lowers the suitability of habitat i for each animal there

and raises the suitability of other habitats for animals there. Note that (2.2) is also

equivalent to

s−1
i =

xi

ai

=

∑N
j=1 xj∑N
j=1 aj

for i ∈ H∗. The right-hand-side of this equation is the total number of animals in

the environment divided by the total number of nutrients arriving per second. At

the IFD, the animals are distributed so that no matter which habitat they are at,
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they get the same amount of nutrients. In this case, we can view the IFD as being

achieved via the sequential allocation of animals to habitats with s−1
i <

∑N
j=1 xj∑N
j=1 aj

.

Since both Equations (2.4) and (2.6) are going to be used extensively in our

analysis, we provide a proof of their equivalence in the next theorem1.

Theorem 2.2.1 Assume that
∑N

i=1 xi = P > 0,
∑N

i=1 a
1
m
i > 0, ci,m > 0, and

ai, bi ≥ 0 for i = 1, 2, . . . , N . The habitat and input matching rules are equivalent

characterizations of the IFD in that for a given set of ai, bi, ci, m, the xi, i =

1, 2, . . . , N are the same for either rule.

Remark: There is another type of suitability function, that is similar to the one

in [1]. Let bi be the basic suitability of the ith habitat, and let ψ(xi) be a function

such that as xi increases, ψ(xi) also increases, but the suitability decreases. We can

write then the suitability as

si = bi − ψ(xi) (2.7)

One possible ψ(xi) function is

ψ(xi) = cixi

where ci > 0. In this case, the habitat matching rule is satisfied when the suitabilities

for two different habitats i, j are equal, so

bi − cixi = bj − cjxj (2.8)

The input matching rule is in this case

bi

ci
− xi∑N

j=1

(
bj

cj
− xj

) =
1
ci∑N

j=1
1
cj

(2.9)

1Proofs of all theorems are in the Appendix.
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As before, the equivalence between Equations (2.8) and (2.9) can be proved using the

same ideas as in Theorem 2.2.1.

2.2.3 Ideal Free and Dominance Distributions

The ideal dominance distribution (IDD) concept introduced in [1] comes from

a type of relaxation of the “free” assumption of the IFD. The basic idea is that,

assuming that all individuals are not equally aggressive, if there are new individuals

arriving, then it will be more difficult for these “unsettled” individuals to access any

habitat dominated by current residents. Thus, the unsettled individuals will end up

in habitats that might not optimize their fitness compared to the case where they

were the first arrivals.

The IDD can be interpreted via sequential settling of species of animals at IFDs.

Suppose that we have N̄ species who are arriving sequentially into the environment.

We assume that the index k = 1, 2, . . . , N̄ , represents the arrival and settling at the

IFD for each of these species. Let i = 1, 2, . . . , N , be each of the N habitats that can

be chosen for the distribution of each species. Let ak
i be the input rate for habitat

i when the species k is settling. Let xk
i be the number of animals of species k at

habitat i. Then, xk−1
i is the fixed number of individuals that settled down in habitat

i, where x0
i = 0 (i.e., only the first species will distribute in such a way that there

is no interference with animals that are already settled in a particular habitat). Let

cki > 0 and mk > 0 be constants associated with the kth species. Let P k be the

total number of animals associated with the kth species. For each species arrival the

individuals want to settle down in the best available habitat by maximizing fitness.

The suitability function that each species uses to determine which is the best habitat,
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is defined as

sk
i =

(ak
i )

1

mk

cki x
k
i + xk−1

i

(2.10)

with the constraint
∑N

j=1 x
k
j = P k for all k. Equation (2.10) defines a nonlinear

difference equation for the distribution of subsequent species. If P k > 0 is such that

P =
∑N̄

k=1 P
k → ∞ as N̄ and k → ∞ then for some finite k′ ≥ 0 no habitat will be

truncated. Since the parameter m skews the distribution it will change the k′ such

that truncation first disappears in an IDD.

The question that arises is: can we know the final value for each species in any

habitat? Notice that (2.10) is similar to (2.5), with a slight change in the variables.

Thus, the distribution of the individuals will be given by the IFD for this specific case.

The next theorem shows how to find the distribution representing the IFD for the

suitability functions as defined in (2.5) (or (2.10)). It gives a solution for the IFD for

a general class of suitability functions (not available in the literature) and a solution

to (2.10) (when for each species k we have that xk−1
i = bi) so that the IDD can be

found for any number of species N̄ that sequentially arrive at the environment.

Theorem 2.2.2 For i = 1, 2, . . . , N , the point

x∗i =

a
1
m
i

ci
P +

a
1
m
i

ci

∑N
j=1

bj

cj
− bi

ci

∑N
j=1

a
1
m
j

cj∑N
j=1

a
1
m
j

cj

(2.11)

is the IFD for the suitability function defined in (2.5), whenever P satisfies

P ≥ max
i=1,2,...,N


 bi

a
1
m
i

N∑
j=1

a
1
m
j

cj
−

N∑
j=1

bj
cj


 (2.12)
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If (2.12) is not satisfied, and without (significant) loss of generality we assume that

a
1
m
1

b1
>

a
1
m
2

b2
> . . . >

a
1
m
N

bN
, the IFD is given by

x∗i =




a
1
m
i
ci

P+
a

1
m
i
ci

∑k∗
j=1

bj
cj

− bi
ci

∑k∗
j=1

a
1
m
j
cj

∑k∗
j=1

a
1
m
j
cj

i = 1, 2 . . . , k∗

0 i = k∗ + 1, k∗ + 2, . . . , N

(2.13)

where

k∗ = arg max


k :

a
1
m
k

bk
>

∑N
j=1

a
1
m
j

cj

P +
∑N

j=1
bj

cj


 (2.14)

Notice that whenever (2.12) is satisfied with strict inequality, x∗i > 0, which implies

that all the habitats end up inhabited. Also, notice that k∗ is given by analyzing the

values of the suitability functions when xi = 0. It is clear that if P is big enough,

then the right-hand-side of the inequality in (2.14) becomes almost 0, and hence all

habitats will end up inhabited.

2.2.4 Individual Animal Fitness Equalization

Normally, the number of habitats N , the ai, bi, ci, m, i = 1, 2, . . . , N , and P > 0

are given. Then, the xi, i = 1, 2, . . . , N , must be found that achieve the IFD via (2.6).

Problems with existence of the IFD can arise, however, if xi is the number of animals

since in that case it is natural to assume that xi is discrete. For example, assume that

xi ∈ {0, 1, 2, . . .}. In this case, the IFD may not exist (e.g., if P = 7, N = 2, m = 1,

a1 = 0.1, b1 = b2 = 0, c1 = c2 = 1 and a2 = 0.2, then (2.6) cannot be satisfied).

But, if the P , ai, bi, ci, m, and N have appropriate values, Equation (2.6) can be

satisfied. The standard approach to cope with this problem is to assume that there

is a large enough number of animals so that it is a good approximation to consider xi

to vary continuously. We will take this same approach so we are assured that an IFD
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exists. But, with xi continuous we lose the ability to distinguish between individual

animals. In this framework it is, however, still possible to introduce a limited notion

of an individual. This will allow us to assign each individual a fitness and then

clearly relate equalization of habitat suitabilities to equalization of individual animal

fitnesses. Moreover, our concept of an individual is critical to modeling the IFD as

a game between many individuals in Section 2.3.1, showing how individuals’ fitness

maximization objective leads to an IFD, and relating this to optimality formulations

for the IFD.

To introduce the concept of an individual, assume that each animal is identical

and represented by some arbitrarily small εx > 0 so that there is an arbitrarily large

(integer) number n > 0 of animals in the environment, where

nεx = P

and

bi = b̄iεx

with b̄i ≥ 0 being the integer fixed number of resident animals in the ith habitat. Then,

if ni ≥ 0 is the (integer) number of animals at habitat i,
∑N

j=1 nj = n, xi = niεx, and

the IFD in (2.6) is achieved when for all i = 1, 2, . . . , N ,

εx(cini + b̄i)∑N
j=1 εx(cjnj + b̄j)

=
(cini + b̄i)∑N

j=1(cjnj + b̄j)
=

a
1
m
i∑N

j=1 a
1
m
j

(2.15)

which has been another interpretation of the IFD in the literature (e.g., in [1, 3]) for

the case bi = 0, ci = m = 1. Notice that for an arbitrary P and bi, in order to ensure

the existence of the IFD we need to have an arbitrarily small positive value εx.

Given the concept of an individual animal εx > 0 at habitat i, i = 1, 2, . . . , N , we

define this animal’s fitness as f(i) =
a

1
m
i

cini+b̄i
. In the case when bi = 0, ci = m = 1 , if
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ai is nutrients per second, f(i) is the number of nutrients per second that an animal

gets at habitat i. This choice is consistent with the results in [7], which show other

ways to relate fitness and suitability. Notice that

f(i) =
a

1
m
i

cini + b̄i
= εx

a
1
m
i

εx(cini + b̄i)
= εx

a
1
m
i

cixi + bi
(2.16)

Notice that if we use the suitability function in (2.2) we have

f(i) =
ai

ni

= εx
ai

εxni

= εx
ai

xi

= εxsi

so that individual animal fitness is indeed a correlate of habitat suitability. Clearly,

however, even though they are linearly related, habitat suitability is not the same as

individual animal fitness. Moreover, if ai, bi, ci > 0 and xi > 0, i = 1, 2, . . . , N , then

equalization of habitat suitability (i.e., si = sj, i, j = 1, 2, . . . , N) is equivalent to

equalization of animal fitness (i.e., f(i) = f(j), i, j = 1, 2, . . . , N). The equivalence

characterized by Theorem 2.2.1 holds for the fitness of all individuals at any habitat

j ∈ H∗.

Remark: For the suitability function defined in (2.7), if we let b̄i be the integer

number of fixed resident animals that we have in the ith habitat. Let also ε̄x be some

arbitrarily small positive value, such that

bi = ε̄xb̄i

xi = ε̄xni

where ni is an arbitrarily large integer number of animals in the ith habitat. Then,

we can define the animal fitness as

f(i) = b̄i − cini =
1

ε̄x
(bi − cixi) (2.17)
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2.3 Game-Theoretic and Optimality Properties of the IFD

In this section, first we define the basic concepts of evolutionary game-theory in

order to prove that the IFD is indeed an evolutionarily stable strategy (ESS). Then, in

order to extend this result, we model the IFD achievement as solving an optimization

problem, and we prove that the IFD is a global optimum point.

2.3.1 Nash Equilibria and Evolutionarily Stable Strategies

In this and the next section, to use a game-theoretic perspective we view each

“player” as an individual animal that makes strategy choices to maximize its payoff,

which is fitness. A Nash equilibrium is a set of animal strategy choices such that any

unilateral deviation by any animal from its strategy choice will not be better for that

animal [27]. The standard definition for an evolutionarily stable strategy (ESS) is a

strategy such that no “mutant” can invade a population of members (“incumbents”)

who use this strategy [10]. The classical ESS idea is based on a two-player game

where incumbents either play other incumbents or mutants (and vice versa). These

players are drawn from an infinite population. There is an extension of this ESS

concept that is called a “game against the field” where the success of each individual

does not depend on a single opponent, but instead depends on the strategies of all

other members of the population (see [11], page 23).

Let f(x̄, Pȳ) be the fitness of a single x̄-strategist in a population (set) of ȳ-

strategists that we denote by Pȳ. We will say that x̄ is an ESS if both of the following

two conditions hold [11]:
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1. For all ȳ �= x̄

f(ȳ, Px̄) ≤ f(x̄, Px̄) (2.18)

and

2. For any ȳ �= x̄, if f(ȳ, Px̄) = f(x̄, Px̄), then for a small q > 0,

f(ȳ, Pȳq) < f(x̄, Pȳq) (2.19)

where f(ȳ, Pȳq) is defined as the fitness of a ȳ-strategist in a population consisting of

individuals playing the strategy ȳq = qȳ + (1 − q)x̄.

The first condition means that x̄ is a Nash equilibrium, since no mutant strategy

ȳ does better than the incumbent strategy x̄, and usually this condition is called the

“equilibrium condition” [14]. The second condition states that if the mutant strategy

ȳ does as well as the incumbent strategy x̄, then the mutant strategy does not do as

well than the incumbent strategy when they play against a population formed from

both the incumbent and the mutant strategies. This is a variation of what is known

as the “stability condition” [14].

2.3.2 Game-Theoretic Characteristics of the IFD

In this section we characterize the relationships between equilibria in games and

the IFD. In a game-theoretic interpretation of the animal distribution problem each

animal has N pure strategies [27] corresponding to choosing habitat i, i = 1, 2, . . . , N .

Each animal can only reside in one and only one habitat. Hence, each animal εx has

a strategy of the form

x̄ = [0, . . . , εx, . . . , 0]�
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where εx is in the ith position, i = 1, 2, . . . , N . These strategies can be interpreted

as pure strategies of a polymorphic population [14]. The meaning of “ȳ �= x̄” for

Equations (2.18) and (2.19) is that ȳ can correspond to placement of εx in any habitat

j �= i. In the next theorem Px̄ for Equation (2.18) is any population such that all

individuals play a strategy so that the IFD defined by (2.6) is satisfied. Clearly, in

this case, the strategies of individuals in Px̄ are not the same since the animals must

play different strategies to achieve the IFD.

Theorem 2.3.1 If xi is a continuous variable with εx > 0 representing an animal,

then the xi, i = 1, 2, . . . , N , given by the IFD in (2.6) are the result of animals using a

(unique, strict) Nash equilibrium strategy and hence an evolutionarily stable strategy.

The game-theoretic model is developed from the perspective of the individual an-

imals. Theorem 2.3.1 shows that if each individual uses a strategy that maximizes

its own fitness, they will achieve an IFD which is an ESS and hence a Nash strat-

egy. Due to the equivalence of individual fitness equalization and habitat suitability

equalization, Theorem 2.3.1 implies that choices at the individual level lead to habi-

tat suitability equalization across the entire environment. The Nash equilibrium is

often called an “optimal” strategy since no animal can do better by deviating from

the strategy. The only allowed deviations from the IFD in the game-theoretic model

of animal distribution problem correspond to shifting εx from one habitat to another

and this is consistent with the assumption that animals can adopt one of N pure

strategies. This fits with the ESS concept above since this corresponds to a single

“rare” mutation in a population. Clearly if there are certain types of simultaneous

deviations of animals (e.g., by swapping habitats via simultaneous mutations), the
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strict Nash can also be maintained; however, such deviations would require coor-

dination and this is not possible since we are inherently considering a competitive

game-theoretic framework via the Nash concept, and hence also the ESS. In the next

section we will, however, reconsider this assumption.

Finally, we note that while in [11] and other papers it has been pointed out that the

IFD is an ESS, this is to our knowledge the first formal proof of this fact. The value

of the formal proof lies in the treatment of fitness, and it clearly connects individual

fitness maximization to habitat-level suitability equalization. The proof shows that

the IFD is a strict Nash equilibrium so some would consider the animal distribution

game to be unique since most games do not have strict Nash equilibria [15]. Moreover,

the proof shows that the IFD of the animal distribution population game is what is

called a “local ESS” in [14].

2.3.3 Optimality of the IFD

In this section we show how optimization models can represent the animal distri-

bution game and how the IFD is a global optimum point for such a model. Recall

that the animal distribution game assumes that all animals in the population seek

to simultaneously maximize their fitness. Assume that ai, bi, ci > 0 and xi ≥ 0,

i = 1, 2, . . . , N . An optimization model for the animal distribution game is one where

the minimum fitness is maximized. In other words,

max min

{
εx

a
1
m
1

(c1x1+b1)
, εx

a
1
m
2

(c2x2+b2)
, . . . , εx

a
1
m
N

(cNxN+bN )

}
subject to

∑N
j=1 xj = P

xi ≥ 0, i = 1, 2, . . . , N

(2.20)

The constraints demand that the population size stays constant and that the number

of animals at each habitat is non-negative. The terms εx
a

1
m
i

(cixi+bi)
are the fitnesses
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for any animal that chooses habitat i, i = 1, 2, . . . , N . Consider a single individual

εx > 0. If this animal is at habitat i and εx
a

1
m
i

(cixi+bi)
< εx

a
1
m
j

(cjxj+bj)
, j �= i, then it can

move to habitat j (i.e., change strategies). The “max min” represents that multiple

animals simultaneously shift strategies to improve their fitness since at least some

animals with lowest fitness shift habitats (and if εx
a

1
m
i

(cixi+bi)
= εx

a
1
m
j

(cjxj+bj)
for some i

and j the min can be achieved at multiple habitats).

The following theorem shows that the animals choose the IFD in order to maximize

their fitness when everybody else is trying to do the same.

Theorem 2.3.2 The point x∗ = [x∗1, . . . , x
∗
N ]�, such that for all i = 1, 2, . . . , N ,

(with x∗i defined in Equations (2.13) and (2.14)) is a unique global maximum point

that solves the optimization problem in (2.20) that represents that each animal simul-

taneously chooses a habitat to maximize its own fitness.

The value of Theorem 2.3.2 is that it shows that the IFD is a global optimum point

for the animal distribution problem. The game-theoretic setting of Section 2.3.2 only

illustrated local optimality in the Nash sense. Theorem 2.3.2 shows that any number

of simultaneous perturbations from the IFD result in possibly many animals incurring

a degradation in fitness. Hence, an arbitrary number of mutants cannot invade the

population. This idea will be studied further in Section 2.4.

Remark: For the case in (2.7) with ψ(xi) = cixi, the idea is again try to maximize

the minimum fitness in the environment. The fitness function in this case is defined

as f(i) = 1
ε̄x

(bi − cixi). Without (significant) loss of generality, we assume that all

habitats are ranked in such a way that b1 > b2 > . . . > bN . Using an approach like in
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Theorem 2.3.2, the optimum point for this case is

x∗i =




bi
∑k∗

j=1
1
cj

+P−∑k∗
j=1

bj
cj

ci
∑k∗

j=1
1
cj

i = 1, 2, . . . , k∗

0 i = k∗ + 1, k∗ + 2, . . . , N

(2.21)

with

k∗ = arg max

{
k : bk >

∑N
j=1

bj

cj
− P∑N

j=1
1
cj

}

2.4 Evolutionary Allocation Dynamics for IFD Achievement

In this section we consider animal allocation dynamics from evolutionary and

decision-making perspectives. We focus on defining allocation dynamics that guar-

antee the achievement of an IFD.

2.4.1 The Replicator Dynamics Model

The replicator dynamics are a simple model of how selection via differential fitness

affects the proportions of animals using different strategies [14, 15, 28]. Here, building

on the game-theoretic formulation in Section 2.3 we show how equilibria of one class

of replicator dynamics are related to the IFD. These are not the standard replicator

dynamics that are developed based on random pairings of two individuals in what

is called a “linear game.” Here, we extend such standard formulations in [13, 14] to

represent our game against the field which is classified as a nonlinear game.

Recall that each animal hasN pure strategies, which correspond to choosing which

habitat to live in for its entire life, and that the number of animals is constant and∑N
j=1 xj = P for some P > 0 and all t ≥ 0. Let

pi =
xi∑N

j=1 xj
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represent the fraction of individuals in a population of animals playing pure strategy

i, i = 1, 2, . . . , N . Clearly pi(t) ≥ 0 for i = 1, 2, . . . , N , and
∑N

j=1 pj = 1 for all

t ≥ 0. The vector p = [p1, p2, . . . , pN ]� is the “population state” which represents the

strategy mix of the population [14]. Clearly, p(t) ∈ ∆ for all t ≥ 0, where

∆ =

{
p(t) ∈ R

N
+ :

N∑
i=1

pi(t) = 1

}

is the “constraint set” (simplex) that defines a subset of the state space. The vector

x(t) = [x1, x2, . . . , xN ]� lies in the simplex ∆x, where ∆x = {x(t) ∈ R
N
+ :

∑N
i=1 xi =

P}.
The replicator dynamics assume continuously mixed generations and are given by

ṗi

pi

= βi [{fitness of animals that play i ∈ H} − {average fitness in population}]
(2.22)

where βi > 0 are proportionality constants, i = 1, 2, . . . , N . The left-hand-side of

(2.22) is the normalized rate of increase in the population share playing strategy i.

The right-hand-side of (2.22) indicates that if i-strategists are more successful (less

successful) than the average, their population share will increase (decrease, respec-

tively).

The replicator dynamics generally describe the evolution of the state of the pop-

ulation p. Note, however, in the case where the players only have pure strategies

i ∈ H, the mean population strategy is

N∑
i=1

piei = p

where ei = [0, . . . , 1, . . . , 0]�, a vector with a 1 in the ith position, represents the

pure strategy i ∈ H. This means that the population state is the mean population
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strategy. Hence, we can think of the replicator dynamics as representing the evolution

of the IFD strategy by the process of natural selection.

In this specific case, we have defined the fitness of animals that play i ∈ H in

(2.22) at time t as (2.16), i.e.,

f(i) = εx
a

1
m
i

ciPpi + bi

where εx > 0 and the average fitness (of a randomly selected individual from the

population) is

f̄ =
N∑

j=1

pjf(j) =
N∑

j=1

εx
pja

1
m
j

cjPpj + bj

Hence, the replicator dynamics are

ṗi = βipi

(
f(i) − f̄

)
(2.23)

or

ṗi = βiεxpi


 a

1
m
i

ciPpi + bi
−

N∑
j=1

pja
1
m
j

cjPpj + bj


 (2.24)

with βi > 0 for all i = 1, 2, . . . , N , when p(0) ∈ ∆. Notice that f(i) − f̄ measures

the deviation from the IFD as quantified by the habitat matching rule (after some

mathematical manipulation). The replicator dynamics for our population game are

in the form of “monotone selection dynamics” [14]. The monotone selection dynamics

in [14], p. 88, show what is essential to set up a replicator dynamics so that ∆ is

invariant. Notice that when si is defined as in (2.2), the average payoff f̄ is constant.

2.4.2 Constraint Set Invariance for the Replicator Dynamics

First, we specify conditions under which (2.24) can be satisfied at the same time

that the constraints
∑N

j=1 pj = 1 and pi ≥ 0, i = 1, 2, . . . , N are satisfied. This is
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essential since we are only interested in solutions to (2.24) that satisfy the appropriate

constraints.

Theorem 2.4.1 The system in (2.24) satisfies the constraint p(t) ∈ ∆, for all t ≥ 0

if and only if βi = βj, i, j = 1, 2, . . . , N , and p(0) ∈ ∆.

This shows that the rate of increase or decrease in proportions of the strategies must

be the same in order for the ordinary differential equation describing the replicator

dynamics to satisfy the constraints of
∑N

j=1 pj = 1, pi ≥ 0, i = 1, 2, . . . , N . A special

case of this result is the following theorem which is from [14].

Theorem 2.4.2 If βi = βj = β for all i, j = 1, 2, . . . , N , and p(0) ∈ ∆, then p ∈ ∆

for all t ≥ 0 (i.e., ∆ is invariant with respect to (2.23)).

To ensure that the constraint set ∆ is satisfied in all that follows we assume that

βi = βj, i, j = 1, 2, . . . , N .

2.4.3 Stability Analysis of the IFD

First, we need to find the equilibrium point in (2.24). We assume in the following

analysis that pi(t) ∈ ∆ − ∂∆ for all t ≥ 0, i.e., we are working strictly inside the

simplex. If we set ṗi = 0, we get

0 = βεxp
∗
i


 a

1
m
i

ciPp∗i + bi
−

N∑
j=1

p∗ja
1
m
j

cjPp∗j + bj




where p∗i is the equilibrium point. Since we are working inside the simplex p∗i �= 0, so

we have

a
1
m
i

ciPp∗i + bi
=

N∑
j=1

p∗ja
1
m
j

cjPp∗j + bj

26



This equation has to be valid for all i = 1, 2, . . . , N , hence for any i, j we obtain

a
1
m
i

ciPp∗i + bi
=

a
1
m
j

cjPp∗j + bj

which is the habitat matching rule in (2.4) but in p-coordinates. In Theorem 2.2.2 we

have shown that this equilibrium point is given by (2.11) in x-coordinates, whenever

P satisfies (2.12) with strict inequality.

Note that, for (2.2), when we try to find this equilibrium point, if pi �= 0 the

solution would be f(i) = f̄ , which means that the consumption rate in each habitat

i has to be equal to the overall consumption rate (in this case this one is described

by f̄) at the IFD equilibrium. Otherwise, the strategy mix of the population will

continue to change.

Theorem 2.4.3 For the replicator dynamics in (2.24), the IFD equilibrium given

by p∗ = x∗
P

(where x∗ is defined in (2.11)) is asymptotically stable, with region of

asymptotic stability ∆ − ∂∆.

Theorem 2.4.3 is a “semiglobal” result which means that if the population state

perturbs from the IFD to a point within some set, then the population state will

return to the IFD. Note that under the game-theoretic interpretation, only a special

type of perturbation is allowed: perturbations correspond to a single animal εx > 0

switching to another strategy where εx is arbitrarily small. Theorem 2.4.3 includes

this strategy perturbation as a special case so it applies to the game-theoretic setting.

What does it mean for the population state to “return” to the IFD? If any animal

switches habitats, then the mechanisms of reproduction via differential fitness will

always shift the animal distribution back to the IFD. The shift of animal εx will result
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in more deaths in its new habitat and correspondingly more births in the habitat it

shifted from.

In [13, 14] it was shown that any ESS for a two-player game must be an asymp-

totically stable equilibrium in the replicator dynamics defined for that type of game,

but that there could exist asymptotically stable equilibria that are not ESS. For our

replicator dynamics for the game against the field, the above results show that there

is one unique equilibrium strictly inside the simplex, that this equilibrium is the IFD

(which we showed was an ESS in Section 2.3), and that the IFD is asymptotically

stable (or exponentially stable for the standard suitability function in (2.2)).

Remark: For the case of (2.7) with ψ(xi) = cixi, we can define the replicator

dynamics as before. Since the fitness function for this case is defined as f(i) =

1
ε̄x

(bi − cixi), we have the following ODE that represents the replicator dynamics.

ṗi = pi
1

ε̄x

(
(bi − Pcipi) −

N∑
j=1

pj(bj − Pcjpj)

)
(2.25)

The stability proof for this case is similar to the one for (2.24).

2.4.4 Allocation Dynamics: Gradient Optimization Perspec-
tive

Related work has been done via the study of the Shahshahani gradient [14] and

for linear games in [12].

Consider the cost function

J =
1

2

N∑
i=1

(
xi

P
− x∗i
P

)2

(2.26)
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where x∗i is defined in (2.11), and
∑N

j=1 xj = P . Note that (2.26) measures the

deviation off the IFD defined by (2.6). The following theorem shows that minimization

of J , results in an IFD.

Theorem 2.4.4 The point x∗i in (2.11) is a global minimizer for the constrained

optimization problem defined as

minimize J = 1
2

∑N
i=1

(
xi

P
− x∗

i

P

)2

subject to
∑N

j=1 xj = P

xi > 0, i = 1, 2, . . . , N

(2.27)

where x∗i is defined in (2.11), when P is satisfied with strict inequality in (2.12).

Next, suppose that a steepest descent method is used in animal reallocation so

that

ẋi = −λP ∂J

∂xi

(2.28)

where λ > 0 is a “step-size” parameter. Note that if we let bi = 0, and choose

λ = βεx
∑N

j=1

a
1
m
j

cj
, Equation (2.28) is

ẋi = −

βεx N∑

j=1

a
1
m
j

cj




xi

P
−

a
1
m
i

ci∑N
j=1

a
1
m
j

cj


 (2.29)

These allocation dynamics are equivalent to the replicator dynamics in (2.24). If in

(2.23) we take f(i) = εx
a

1
m
i

cixi
, then the replicator dynamics in (2.24) are the same as

in (2.29). Hence, we know that the constraint
∑N

j=1 xj = P is met for all t ≥ 0.

Moreover, for the optimal allocation dynamics the following result holds.

Theorem 2.4.5 The optimal allocation dynamics in (2.29) have the IFD as an equi-

librium and it has a region of exponential stability given by ∆x − ∂∆x.
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Hence, the allocation strategy will not get “stuck” and will result in a distribution

of effort that converges to the IFD. Convergence is achieved independent of where

the effort distribution starts. Equation (2.28) and the proof illustrate that if P

is small (big) we will have a faster (slower) convergence rate. Also, notice that

there is a critical difference compared to the strict Nash equilibrium and replicator

dynamics viewpoint. Perturbations for the game-theoretic formulation are due to a

single animal εx > 0 switching habitats, and the replicator dynamics are built upon

that perspective. With the optimal allocation perspective, any perturbation is allowed

(i.e., any initial condition corresponding to the initial animal effort distribution must

be possible), even ones that are not small perturbations εx > 0.

2.5 Multizone Temperature Control Application

Here, to illustrate the theoretical results shown in the previous sections, we con-

sider a multizone temperature control problem that has a voltage saturation con-

straint [24]. The experiment consists of N = 4 zones, where each zone consists of

one lamp with voltage input vi(t) and one sensor that provides the temperature Ti(t),

t ≥ 0. The idea of this experiment is to use the replicator dynamics in (2.24) to reach

a maximum uniform temperature in each of the zones (it is important to note that

this is not a standard tracking problem since the maximum achievable temperature

is not known). For that, we assume that εx = ci = m = bi = β = 1.

Equation (2.24) has two main variables: the proportion of the number of animals

in habitat i, pi, and the arrival rate ai for the ith habitat. In the previous analysis,

the ai values were positive constants, however, these arrival rates could vary with

time. Suppose we define each arrival rate to be the inverse of the temperature sensed
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in each zone, so that for i = 1, 2, . . . , N , ai(t) = 1
Ti(t)

. Since Ti(t) > 0, ai(t) > 0 for

all i = 1, 2, . . . , N . Next, let xi(t) = pi(t)P = vi(t), where
∑N

j=1 vj(t) = P > 0 is the

total amount of voltage that can be applied to all zones. For our lamps, vi(t) ≥ 0,

t ≥ 0, and this fits with the assumptions on xi(t) in the theory. For a given vi(0),

the replicator dynamics indicate how to redistribute voltage, depending on ai(t).

Here, the temperature will change due to ambient and interzone influences, and the

replicator dynamics will persistently and dynamically redistribute the constrained

amount of voltage. Will it do this in a way to try to achieve the maximum uniform

temperature? The results below seem to illustrate that it will. Why? Because, it will

allocate more voltage to the minimum temperature at each time step. It will tend to

force the lowest (minimum) temperatures to rise faster than the higher temperatures.

While we expect that the temperature in each of the zones will be the same after

some time, there are certain features of the physical experiment that conspire against

us achieving this goal. One problem is the physical location of the lamps and the

sensors. Since we are working with breadboards, it is difficult to have the same sensor-

lamp, inter-lamp, and inter-sensor distances for all the zones, and hence the interzone

effects are different for each zone. The second problem is the sensors. We calibrate

one sensor and then we pick three others that provide temperatures close to it before

construction. Next, there is sensor noise. If all the sensors were the same, and there

was no noise, after a period of time the same temperature would be achieved in each

of the zones.

The results are shown in Fig. 2.1. This figure shows the first 50 minutes of the

experiment. At the beginning, the experiment was at 22 degrees Celsius, and as we can

see, practically all the zones were around this temperature. The temperature in each
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of the zones starts to increase according to the voltage that we allocate to each of the

lamps. The idea is to distribute 3.5 volts across the zones. We assume that these 3.5

volts are equivalent to P . For this case, we assume that P = 20. The initial conditions

are x1(0) = 0.44, x2(0) = 0.57, x3(0) = 0.51, and x4(0) = 1.98. All the units are

in volts. After 15 minutes, the experiment almost reaches a uniform temperature,

around 29 degrees Celsius. At 18 minutes, we add a disturbance to the grid. This

disturbance consists of turning on a lamp that is close to the first temperature zone,

and leaving it on for 2 minutes. As we can see in Fig. 2.1 the first zone drastically

increases its temperature, but at the same time there is a reallocation of the resource

(voltage) across the four zones. We can see then that at 18 minutes, all the zones

but the first one start to have more voltage, and that occurs until the disturbance

finishes. The final temperature in the grid is practically the same, ±1 degree Celsius.

In this case, it is clear that we do not reach a unique equilibrium point described

by the input matching rule due to ambient and interzone influences. However, as we

can see in Fig. 2.1 the final values allocated are x1(3000) = 0.88, x2(3000) = 0.88,

x3(3000) = 0.86, and x4(3000) = 0.88. However, using our previous analysis the

final values should be x∗1 = 0.88, x∗2 = 0.87, x∗3 = 0.86, and x∗4 = 0.89, which as

we can see are relatively close to what we have in the experiment. Notice that the

only computations needed to implement the control are those for the computation of

(2.24), using ai = 1
Ti

, and with εx = ci = m = bi = β = 1. Clearly, the computational

complexity is not a concern for this application.
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Figure 2.1: Temperatures in four zones of the multizone temperature control exper-
iment. The plot represents the temperature in each of the zones (left axis), and the
distribution of the xi (right axis).

2.6 Conclusions

We have analyzed the ideal free distribution (IFD) for a general class of suitability

functions. We have proven that the habitat and input matching rules are equivalent

for this general case. We also proved that the IFD is indeed an evolutionarily stable

strategy (ESS) for the general case. Since this last concept only provides local re-

sults, we state a constrained optimization problem where we prove that the IFD is a

global optimum point. Finally, from an evolutionary time perspective, we set up the

replicator dynamics and show that the IFD is an asymptotically stable equilibrium

point. An interesting characteristic for this case is that under some constraints, a

gradient optimization perspective leads us to the same replicator dynamics. Finally,

in order to provide more insight on why these allocation dynamics are useful from an

engineering perspective, we applied the approach to a multizone temperature control

problem. Using the replicator dynamics ideas, we showed how in spite of limiting

the input voltage, we can manage to have a uniform temperature in each of four

temperature zones.
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CHAPTER 3

FORAGING THEORY FOR MULTIZONE
TEMPERATURE CONTROL

3.1 Introduction

Foraging theory is an area of behavioral ecology that mathematically describes a

foraging animal searching for nutrients and choosing which ones to consume [29, 30].

One of the classical foraging models is the prey model. This model describes a

forager searching for prey items individually dispersed throughout its environment

and predicts which types of prey the forager should exploit in order to maximize

its rate of energy gain. The analogy established in [31, 32] between a biological

forager and an “agent” (autonomous vehicle or software module) allows for application

of foraging models to engineering problems involving agents (i) searching for tasks

dispersed throughout a domain, and (ii) deciding which task types to process and

how long to process tasks or sets (patches) of tasks.

Here, we use the conceptual framework in [31, 32], along with the idea of “foraging

for error” from [33, 34] to develop a controller for a multizone temperature control

problem. The goal is to achieve a uniform desired temperature across a grid of eight

temperature zones, where a zone comprises a temperature sensor and a lamp. The
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controller (agent) moves around the grid searching for regions of temperature error

(the task). The prey model approach to the problem relies on the definition of a “task

type” as a zone with a particular error with respect to the desired temperature. Given

this definition, an encounter with a task of type i occurs when the controller comes

across a zone with a temperature error corresponding to task type i. The controller

then uses the prey model algorithm [29] to decide whether to process the task, that

is, whether to heat the zone associated with the error. We implement the experiment

and controller in our laboratory [35] and provide data to illustrate the performance

of the foraging algorithm.

The temperature control problem we are addressing is essentially that of a dis-

tributed feedback control problem. Recent relevant work in this area includes spa-

tially distributed control [36, 23], modeling and estimation of distributed processes

[37], distributed control of thermal processes [38, 18, 39, 40], spatially interconnected

systems [41], and semiconductor processing [42, 43, 44]. In [23], the authors imple-

ment various decentralized and hierarchical control ideas for the actuation allocation

problem of an air-jet system. Distributed temperature control of thermal processes is

addressed in [39], and the authors focus on multivariable distributed control in order

to maintain a uniform temperature across a wafer during ramp-up. In [42, 44] the

authors present methods where resources are allocated using geometric and adaptive

techniques in order to utilize a heat source in designing a model-based control signal.

In [45], the authors describe a lithographical system that is heated by 49 indepen-

dently controlled zones. Distributed temperature control methods have been used
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to improve the performance of some devices in personal computers [19]. More re-

cently, in [24] the authors studied dynamic resource allocation strategies for different

processes (e.g., a multizone temperature control with 16 zones).

Our approach is novel with respect to what is found in the literature. Broadly

speaking, we demonstrate for the first time the utility of merging the fields of engi-

neering and behavioral ecology by using models from foraging theory to address an

important class of distributed temperature control problems. Specifically, we show

how a bioinspired distributed decision-making system (i.e., multiagent system) that

communicates over a network can be used to control a complex dynamical system.

The communication network consists of two “clients,” which obtain data from each

of the temperature zones, connected to a central “supervisor” that controls agent

actions across the grids. Network delays from this topology as well as disturbances,

such as interzone effects, ambient temperature changes, and wind, introduce addi-

tional challenges that, when overcome, highlight the robust nature of the agent-based

controller. Restrictions on the number of agents and the amount of lamp voltage

they can apply give our control strategy characteristics of dynamic resource alloca-

tion problems such as those mentioned above. Overall, while applications of foraging

theory to autonomous vehicles are studied in [31, 32, 46], this is to our knowledge

the only other existing control engineering application of foraging theory. This chap-

ter should, thus, be viewed as early work, but with results that show clear paths to

further exploit concepts from mathematical behavioral ecology in engineering.

We begin by discussing the theory of the prey model, and how this theory can be

used in a multizone temperature control experiment. Then, we show implementation

results for tracking and regulation problems where we specify a desired temperature
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that must be reached by each zone in the temperature grid. In order to test the

controller’s performance, we add a disturbance and we limit the number of zones

that a forager can search. Finally, to explain a key feature of the emergent behavior

of the temperatures in our experiment, we discuss connections between our foraging

algorithm approach and the “ideal free distribution” (IFD) [1], an idea from theo-

retical ecology that has recently been found to have potential uses in engineering

applications [47, 25, 26].

3.2 Foraging Model

From a biological perspective, the environment of a foraging animal comprises

prey or food items that are spatially dispersed. Each forager’s primary “goal” is to

obtain energy, and the only way in which to do so is by searching for, attacking, and

consuming prey. The forager must make decisions about how to interact with its

environment to maximize some correlate of Darwinian fitness. If there are different

types of prey, which types should be attacked? Why not specialize on particular types

to avoid wasting time on substandard prey? On the other hand, why not generalize

and take advantage of all opportunities? This optimal diet problem is studied using

the so-called prey model from foraging theory [29]. The work in [31, 32] discusses the

applicability of this theory to many engineering problems by viewing a forager as an

agent and sources of energy or prey as tasks that must be processed. Here, using this

general agent-based terminology, we provide an overview of the prey model following

the treatment in [29].

The prey model describes an agent searching for tasks of different types in a

particular environment. Each task holds a certain “point value” corresponding to
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the increment in the success level of an agent if it successfully processes the task.

Processing is the equivalent of a biological forager handling prey. Point values quantify

reward. The agent must search for tasks, recognize a task once it is encountered, and

then decide whether to process the task based upon this recognition. The prey model,

in its original form, assumes that a task is recognized correctly, that no time is required

for recognition, and that the goal of the agent is to maximize its average rate of point

gain.

Let there be n different types of tasks in the environment described by: ei, the

expected time required to process a task of type i; vi, the expected number of points

obtained from processing a task of type i; λi, the average rate of encounter with

tasks of type i while searching; and pi, the probability of processing a task of type i

if it is found and recognized. Encounters with type i are assumed to be sequential

and to follow a Poisson process. While we have assumed no explicit cost for time

spent searching, one may be accounted for by redefining vi [29]. The average rate of

point gain J for the agent is the expected number of points obtained divided by the

expected total amount of time spent foraging, which includes both search time and

time spent processing tasks. If an agent spends on average Ts time units searching,

then we have

J =

n∑
i=1

piλiTsvi

Ts +
n∑

i=1

piλiTsei

=

n∑
i=1

piλivi

1 +
n∑

i=1

piλiei

.

The probability of processing each task type is the decision variable for the agent.

Thus, the goal of the agent is to choose the pi that maximizes J . We first rewrite J

as

J =
piλivi + ki

ci + piλiei

,
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where ki is the summation of all terms in the numerator not involving task type i

and ci is a similar variable for the denominator. Differentiating with respect to pi,

∂J

∂pi

=
λivi(ci + piλiei) − λiei(piλivi + ki)

(ci + piλiei)2
=
λivici − λieiki

(ci + piλiei)2
. (3.1)

Note that if the numerator of Equation (3.1) is negative, then J is maximized by

choosing the lowest possible pi. Correspondingly, if the numerator is positive, then

J is maximized by choosing the highest possible pi. Therefore, because 0 ≤ pi ≤ 1,

the pi that maximizes J is either pi = 1 or pi = 0 for each i depending on the sign of

vici − eiki. This concept is known as the zero-one rule: to maximize its rate of point

gain, an agent must either process a task of type i every time it encounters it or never

process a task of type i. The question then is which tasks the agent should process

and which tasks it should ignore. The answer must account for missed opportunity.

If the rate of point gain that results from processing task type i is larger than that of

searching for and processing tasks of other types, then the agent should process the

task of type i. On the other hand, if the agent would gain more points by searching

for other tasks and processing those, then the task of type i should not be processed.

Summarizing, this results in the rule

set pi = 0 if vi/ei < ki/ci

set pi = 1 if vi/ei > ki/ci,

where vi/ei is the rate of gain that results from processing task type i and ki/ci is the

alternative rate of gain resulting from searching for and processing other task types.

We now describe the prey model algorithm in light of the above discussion. Denote

the rate of point gain that results from processing type i (vi/ei) as the profitability
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of task type i, and rank the tasks in the environment according to their profitability

such that v1/e1 > v2/e2 > · · · > vn/en. If type j is included in the agent’s “task

pool,” those types that the agent will process once encountered, then all types with

profitabilities greater than that of type j will be included in the task pool as well.

Thus, the prey algorithm states that, after ranking the task types by profitability,

include types in the task pool starting with the most profitable type until

j∑
i=1

λivi

1 +
j∑

i=1

λiei

>
vj+1

ej+1

. (3.2)

The highest j that satisfies this equation is the least profitable task type in the

task pool. In other words, if task types in the environment are ranked according

to profitability with i = 1 being the most profitable, and if type j + 1 is the most

profitable type such that the agent will benefit more from searching for and processing

types with profitability higher than that of j + 1, then tasks of types 1 through j

should be processed when encountered and all other tasks should not. If the equation

does not hold for any j, then all task types should be processed when encountered.

A derivation of (3.2) is given in [29].

The exclusion of type j + 1 does not depend on the rate of encounter with type

j+1. This exclusion implies that if the expected missed opportunity gains exceed the

immediate gains of processing a particular type, then it does not benefit the agent

to process the type, no matter how often the agent encounters it. Equivalently, if a

type’s rate of encounter exceeds a critical threshold, then less profitable types should

be ignored regardless of how common they are in the environment.
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It is important to note that the prey model assumes the agent has knowledge

of all parameters. In many engineering applications, it is reasonable to imagine the

expected processing time ei and the expected points obtained vi to be parameters

that are known or approximated. However, knowledge of the rate of encounter with

tasks λi often may be an unrealistic assumption, and online estimation techniques

may need to be used [31]. An additional assumption of the prey model is that the

agent has infinite life; for example, infinite fuel for an autonomous vehicle. Also,

since the rate of encounter is constant, an infinite number of tasks are assumed to

exist. This idea might imply the ability of tasks to arrive within the environment, an

infinite number of spatial task arrangements, or an infinite number of ways that the

agent can move through the environment. More realistic, time-constrained situations

are accounted for in a risk-sensitive version of the prey model [29, 30, 31].

3.3 Temperature System and Application of the Prey Model

The temperature system under consideration comprises a temperature grid di-

vided into eight “zones” as shown in Figure 3.1. A zone contains a lamp and a

National Semiconductors LM35CAZ temperature sensor. Two computers (clients)

are each connected to four different zones via four analog inputs and four analog

outputs on a DS1104 dSPACE card. The digital outputs transmit on/off signals from

the client to the lamps, and the analog inputs transmit temperature data from the

sensors on the grid to the client. The DS1104 card has eight analog inputs: four

with 16 bit resolution and four with 12 bit resolution. Because of this, the use of

two computers (and correspondingly two dSPACE cards) allows for all eight zones to

have a 16 bit resolution input connection. Communication between each client and
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the supervisor takes place over a TCP/IP connection via Matlab. Data collected via

dSPACE and the Real-Time Workshop is acquired with MLIB/MTRACE. In general,

MLIB/MTRACE captures the data from the board and transfers the information to

Matlab. This provides access to all variables from the application running on the

dSPACE card, and allows the use of various Matlab commands. Using these capabil-

ities, data is acquired and sent over the network connection to the supervisor. The

supervisor gathers data from the clients, implements the appropriate control algo-

rithm, and then sends information back to the clients as to which lamps should be

turned on.
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Figure 3.1: Zone layout on a single temperature grid. Each zone contains a lamp and
a temperature sensor.

To apply the prey model to the temperature control experiment, we view a con-

troller as an agent (animal) and a task (prey) as a zone with a specific error relative

to the overall desired temperature. Hence, the number of task types n is free to be
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chosen as any reasonable number of discretized error quantities. In the specific ap-

plication that follows, we choose n = 100 so that the agent may encounter any of 100

types of error. We choose these 100 types to span a range of error of 0◦C (type 100)

to 5◦C (type 1) with the type distribution defined by the function

i = ceil(100e−1.2(Td−T k)) (3.3)

where k = 1, 2, . . . , 8 is the zone number and “ceil” is the standard ceiling function

for converting to an integer. Equation (3.3) is shown in Figure 3.2(a), where i is

the task type and (Td − T k) ∈ [0, 5] is the error of the kth zone with respect to the

desired temperature Td. This nonlinear function is chosen since it defines a larger

number of types for errors with small magnitude, thus providing better accuracy near

the desired temperature. The ceiling function discretizes the type, and a saturation

function is used to assure that the error lies within the required domain. In other

words, errors that correspond to T k being above Td are equivalent to 0◦C errors and

are considered to be of type 100.

The controller “moves” around the temperature grid by being randomly placed

on one of the eight zones and detecting the temperature associated with that zone.

Since the temperature of each zone constantly changes, placement of the controller on

a specific zone does not imply an encounter with a particular task type. The type that

the controller encounters depends on the temperature of the zone. The random zone

selection adds to the stochastic nature of search and prevents oscillatory behavior

that may result from systematic movement over the zones.

Processing times for each task type are determined by the function

ei = 100 + 1000e−0.05(i−30)
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Figure 3.2: Parameter functions. Panel (a) depicts the determination of task type
from encountered error, and panel (b) illustrates the processing times for each task
type.

shown in Figure 3.2(b) where i is the task type. This function assigns longer pro-

cessing times to task types that correspond to larger Td − T k temperature errors

since larger errors require a longer length of heating time by a lamp. The expo-

nential characteristic of this function matches the distribution of processing times

to the distribution of task types. Note that the processing times span a range of

more than 4 seconds to 0.1 seconds. Although we examine one specific illustrative ei,

other processing-time functions may be chosen and will potentially result in different

performance.

Task type point values are additional parameters that can be chosen freely and

will affect the performance of the controller. Generally, task types corresponding to
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larger errors should have larger point values than task types corresponding to smaller

errors. We choose point values according to the function

vi = 101 − i

for i ∈ {1, . . . , n− 1}. This point gain function assigns point values ranging from 100

points for a type-1 task to two points for a type-99 task. For a type-100 task, we

assign a negative point value since tasks corresponding to zero or negative error do

not need to be actuated with the lamp.

Rates of encounter λi with different task types are estimated in real time as the

experiment runs. The controller of an agent has a memory and is able to keep track of

its number of encounters with a specific error. At any given time instant, an estimate

λ̂i of the rate of encounter with type i for that particular agent is calculated as the

number of times type i has been encountered by the agent divided by the time that

the agent has spent searching for tasks. Once the relationship between error and type,

the processing time function ei, and the point value function vi are determined, the

prey model algorithm described by (3.2) is implemented at each simulation time step

using the rate of encounter estimates in order to determine which task types should

be processed when encountered.

Summarizing, the controller agent is randomly placed on a zone (implying an

encounter with, for example, task type i), λ̂i is updated, and the prey model algorithm

is calculated using the new rate of encounter estimate in order to determine whether

the controller should stop searching for tasks momentarily and heat (with the lamp)

the zone corresponding to the encountered task for the amount of time specified by

ei.
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3.4 Experiments and Results

To illustrate the ideas described in the theory, we performed three different ex-

periments. The first is a tracking problem where the desired temperature is altered

over time. The second experiment illustrates how the foragers reallocate when a dis-

turbance is applied after the desired temperature is reached in the temperature grid.

Finally, we limit the number of zones that each forager can search to see whether

a desired temperature is achieved. In all of these cases we use four foragers, each

of which use the prey algorithm described in the previous section. Our results show

that the desired temperature is achieved despite sensor inaccuracy, noise, and network

delays. We also highlight an interesting connection with the “ideal free distribution”

(IFD) concept from theoretical ecology [1, 3].

3.4.1 Tracking

To evaluate controller tracking abilities, we alter the desired temperature over

time. Initially, the desired temperature is set to Td = 23◦C. We then change Td

at 340 and 680 seconds to Td = 24◦C and Td = 22◦C, respectively. The ambient

room temperature is Ta = 21.3◦C. Typical results are shown in Figure 3.3. We ran

the experiment many times and found similar performances for other Td values and

ambient conditions.

The prey model algorithm achieves the desired result: the temperature of each

zone tracks the desired temperature changes. Note that data is acquired from the

sensors at a sampling rate of 1 ms. This value was chosen to obtain accurate estimates

of the rate of encounter with tasks for a particular agent. Although the sensors

are very accurate (±0.2◦C typical accuracy, and ±0.5◦C guaranteed), their thermal
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Figure 3.3: Multizone temperature control tracking performance, desired temperature
(dashed), and actual temperature (solid) with plot layout corresponding to spatial
zone positions in Figure 3.1. The stem plot at the bottom of each panel indicates the
on/off state of the lamp xi for zone i at a given point in time.

constants are slow relative to the chosen sampling rate, yielding the noisy responses

observed in Figure 3.3. Nevertheless, Figure 3.3 shows that on average good tracking

performance is achieved.

The processing of tasks in each zone over time is indicated by the overlaying stem

plot in Figure 3.3, which shows whether the lamp for a given zone is on or off at

a particular point in time. It is clear from this plot that the decrease in desired

temperature at 680 seconds results in no tasks being processed for a short period.

This is because the temperature error of all zones during this time is negative (the

actual temperature is above the desired temperature) implying encounters with only

type 100 tasks, which have negative point value and are not worth processing. Also
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note that when the zones’ temperatures are essentially at the desired temperature,

some task types are still ignored. This is evident from the existence of gaps in the

stem plot around steady state and is due to the exponential nature of the ei curve.

When all of the errors are small, the processing times of the encountered types do not

differ much from one another (since they occur on the flatter part of the ei curve).

The controller then is not willing to waste time processing very tiny errors when it

can search for and spend the same amount of time processing small (but not tiny)

errors and receive a larger number of points.

The task types that each forager encounters over time are shown in Figure 3.4.

Each forager encounters lower task types at the beginning due to the initial presence

of large positive errors that correspond to low task types (Figure 3.2(a)). This char-

acteristic is also seen when the desired temperature is increased at 340 seconds. As

mentioned above, however, the second Td change at 680 seconds causes encounters

with only type-100 tasks because of a negative temperature error.

3.4.2 Disturbance Effects

The tracking experiment showed that the prey model controller achieves good

tracking performance. Here, we introduce a disturbance by means of an extra lamp

located next to the sensor in zone 3. The idea is to regulate the temperature of the

grid to a desired temperature Td = 20◦C, and once a steady-state value is achieved,

the new lamp in zone 3 is turned on.

The experiment was begun with an ambient room temperature of Ta = 18.5◦C.

Figure 3.5 illustrates the temperatures and the lamps that were on for the first 10

minutes of the experiment. The controller was initially run in the absence of any
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Figure 3.4: In this figure, we illustrate the task-type encounters of each forager with
respect to time. Encounters are downsampled for visualization.

disturbance, and the extra lamp in zone 3 was turned on after approximately 60

seconds. As seen in Figure 3.5, the temperature in zone 3 starts to increase, but

the temperature in the other zones remains close to the desired temperature Td. The

disturbance is turned off around 110 seconds, and the temperature drops until it again

reaches Td. Figure 3.5 also shows the lamps that are on at a given time. We see that,

during the time the disturbance was on, no foragers heated zone 3, even though the

zone could have been selected by the algorithm. This behavior is expected considering

the negative error in zone 3 after the disturbance. Foragers that randomly select zone

3 encounter a type-100 task and do not process it because it is not profitable enough

to be included in the task pool. However, once the disturbance is turned off, and the
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temperature returns close to Td, the foragers visit that zone in order to keep the grid

at the desired temperature.
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Figure 3.5: Multizone temperature control performance when a disturbance is applied.
The desired temperature (dashed), the actual temperature (solid), and the lamps that
are on (stem) are shown in the plot layout corresponding to spatial zone positions in
Figure 3.1. The stem plot at the bottom of each panel indicates the on/off state of
the lamp xi for zone i at a given point in time.

3.4.3 Search Limitations

The previous two experiments were based on the assumption that all foragers could

sense the temperature in every zone of the multizone temperature grid. However, an

interesting case arises when the foragers do not have access to all zones’ temperatures.

To investigate this issue, we divide the four foragers into two sets of two. The first

set contains foragers 1 and 2, which are limited to search zones 1 through 5. The

second set, comprising foragers 3 and 4, is limited to search only zones 4 through 8.
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Zones 4 and 5 are common to both sets. The prey model is still applied; however,

the number of zones the forager can randomly encounter is limited.

The goal of this experiment is to regulate the temperature grid to a desired tem-

perature Td = 20◦C when the ambient room temperature is Ta = 18.9◦C. Figure

3.6 shows the results for 600 seconds. After 10 minutes, the temperature across the

multizone temperature grid is essentially constant at the desired temperature. Some

expected oscillations exist around the desired temperature due to the number of for-

agers, network delays, and sensing limitations. The search limitation is evident in

Figure 3.7: only two foragers search zones 1 through 5, while the other two search

zones 4 through 8. These limitations, however, do not affect tracking performance.

The desired temperature is reached even in the absence of perfect information.

3.4.4 Discussion

Our results show that the temperature of each zone reaches each desired tem-

perature that is applied despite several performance-limiting effects, namely resource

allocation constraints, network delays, disturbances, and imperfect information. Re-

sources are limited owing to the fact that only four foragers are allocated around the

grid. Thus, the maximum number of lamps on at any given time is four. The result

is at least four unattended zones that must experience a decrease in temperature and

then later receive attention again due to the temperature error that has developed.

This pattern yields slight oscillatory behavior in Figure 3.3 that is most evident in

the zones where the desired temperature is reached the fastest. Network and com-

munication delays also affect controller performance. The clients sample temperature
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Figure 3.6: Multizone temperature control performance when there is not perfect
information. The desired temperature (dashed), the actual temperature (solid), and
the lamps that are on (stem) are shown with plot layout corresponding to spatial
zone positions in Figure 3.1. The stem plot at the bottom of each panel indicates the
on/off state of the lamp xi for zone i at a given point in time.

data every 1 ms via the sensors and transmit this data back to the supervisor. Be-

cause these connections are implemented over a TCP/IP connection, internet delays

exist. However, the controller performs quite well in the presence of such constraints.

Additionally, good performance was achieved after the introduction of disturbances

and information limitations.

It should be noted that the experiments were performed at different times of the

day and year, leading to different ambient conditions. In addition to temperature

fluctuations from experiment to experiment, wind current due to, for example, air

conditioning systems and window drafts also exists. Although such adverse experi-

mental conditions can significantly affect experiment results (e.g., making achieved
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Figure 3.7: Corresponding zones for each of the four foragers.

steady-state behavior different, compare Figure 3.3 to Figures 3.5 and 3.6), the per-

formance of the controller is quite good. Furthermore, parameter value and function

tuning may lead to improved results. For example, the type function in (3.3), the

processing-time function ei, and the point-value function vi were chosen in our ex-

periments to simply demonstrate the utility of a foraging theory approach to control;

however, different functions may be used and, with proper tuning, may result in

improved performance.

An important characteristic of the experimental results given above is the connec-

tion to the IFD. In the temperature control experiment, the group of foragers tends

to reach an IFD. Why? If we think of temperature error in a given zone as a nutrient,

the foragers will allocate themselves in the zones where the temperature is below the

desired one, and they tend to choose those zones where the reward is higher (i.e.,
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where they are getting a high number of points vi). In this way, they persistently

move around the grid and maintain the same consumption rate for each of them that

corresponds to the equilibration of the zone temperatures in Figures 3.3, 3.5, and 3.6.

3.5 Conclusions

The utility of foraging theory for decision-making system design was established

in [31, 32] for autonomous vehicles via simulations. Here we examine an application of

the theory to an actual physical experiment, namely temperature control of a grid of

eight zones. A controller is thought of as an agent searching for error across the grid,

and it uses the prey model algorithm to decide which types of error to actuate with a

lamp to achieve a uniform desired temperature across the grid. The algorithm causes

the controller to ignore certain types of error when the missed opportunity of more

profitable types is too great to forgo. Results show that the controller does very well

in tracking desired temperatures, even in the presence of disturbances and sensing

limitations. The results also illustrate a connection between the prey model and the

ideal free distribution. The desired temperature is reached in all three experiments

by the foragers allocating themselves in the zones where the error is higher.

Future directions include applications of extended foraging theory concepts such as

the patch model to determine how long to process certain error types and risk-sensitive

foraging theory to decide which types to process when time is limited. Moreover,

there is a need to mathematically analyze the stability of the controller; however, this

is quite challenging due to the need to consider sensor noise, disturbances, lack of

perfect information (i.e., decentralized control), asynchronous operation, and the fact
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that the control input is of the on-off type that is constrained so that only a limited

number of zones can be heated at one time.

55



CHAPTER 4

HONEY BEE SOCIAL FORAGING ALGORITHMS FOR
RESOURCE ALLOCATION: THEORY AND

APPLICATION

4.1 Introduction

Evolution by natural selection has shaped biosystem optimization and control

processes to enhance the probability of species survival [48]. The “bioinspired” design

approach [34] seeks to exploit the evolved “tricks” of nature to construct robust high

performance technological solutions. For instance, the ant colony optimization (ACO)

algorithms introduced by M. Dorigo and colleagues (e.g., see [49, 50, 51, 52]) mimic

ant foraging behavior and have been used in the solution to classical optimization

problems (e.g., discrete combinatorial optimization problems [53]) and in engineering

applications (e.g., [54, 55]). The primary goal of this chapter is to show that honey

bee social foraging techniques can be exploited in a bioinspired design approach to (i)

solve a continuous optimization problem underlying resource allocation [22], and (ii)

provide novel strategies for multizone temperature control, an important industrial

engineering application.
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Our model of honey bee social foraging relies on experimental studies [56] and some

ideas from other mathematical models of the process. A differential equation model

of functional aspects of dynamic labor force allocation of honey bees is developed and

validated for one set of experimental conditions in [57, 48]. The work in [58] extends

this model (e.g., by adding details on energetics and currency) and [59] introduced

a generic nonlinear differential equation model that can represent social foraging

processes in both bees and ants. Like in [59, 58], our model of recruitment uses

the idea from [57, 48] that dance strength proportioning on the dance floor shares

some characteristics with the evolutionary process (e.g., with fitness corresponding to

forage site profitability and reproduction to recruitment as discussed in [56]). Here

we make such connections more concrete by modeling the bee recruitment process in

an analogous manner to how survival of the fittest and natural selection are modeled

in genetic algorithms using a stochastic process of fitness proportionate selection

[60]. The authors in [61] introduce an “individual-oriented” model of social foraging

and validate it against one set of experimental conditions as was done in [57, 48].

More recently, in [62] the authors expanded and improved the model in [61] (e.g.,

taking into account the findings in [63] and by studying an equal harvest rate forager

allocation distribution). The work in [64] studies the pattern of forager allocation and

the optimality of it. The authors in [65] study the spatial distribution of solitary and

social food provisioners under different currency assumptions. The work in [64, 65, 62]

identifies connections to the concept of the “ideal free distribution” (IFD) [1]. Here,

we do not use a detailed characterization of bee and nectar energetics and currency

since there is not enough experimental evidence to justify whether or when a gathering

rate or efficiency-based currency is used [56]; instead, we develop a generic measure
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of forage site profitability. This general profitability measure approach is the same

one used in [66] to represent the nest-site quality landscape for the honey bee nest-

site selection process. Our general measure has the advantage of allowing us to

easily represent a wide range of density-dependent foraging currencies via the classical

“suitability function” approach to IFD studies [1]. Also, it eases the transition to the

multizone temperature control problem since the temperature control objective can

be easily characterized with our general profitability measure.

In this chapter, the IFD is a central unifying concept. The IFD will emerge for

one hive as the foragers are cooperatively allocated across sites. Moreover, if n hives

compete in the same environment for a resource the IFD will also emerge. Here, we

create a mathematical representation of the n-hive game where each hive’s strategy

choice entails picking the distribution of its foragers across the environment. Our

analytical study starts by showing that the IFD is a strict Nash equilibrium [27] in

terms of the payoffs to each hive and a special type of evolutionarily stable strategy

(ESS). The original definition of an ESS is based on one important assumption: the

population size has to be infinite. In [67, 68] the authors define the conditions that

must be satisfied in order to prove that a strategy is evolutionarily stable for a finite-

population size. Using the ideas in [67] we state the conditions for what we call a

one-stable ESS, and show that the IFD satisfies those conditions. This means that

in an n-hive game, if a single hive’s strategy (forager allocation) mutates from the

IFD it cannot survive when competing against a field of n− 1 hives that use the IFD

strategy. While this means that the IFD is locally optimal in a game-theoretic sense

(i.e., unilateral forager allocation deviations by a hive are not profitable), here we

show that the achieved IFD is a global optimum point for both single hive and n-hive

58



allocations. For the n-hive case, this means that if the forager allocation of all hives

but one is at the IFD, then the remaining hive has to distribute its effort according

to the IFD if it is to maximize its return.

The utility of these theoretical concepts and the honey bee social foraging algo-

rithm are illustrated by means of an engineering application. One possible engineering

application is the dynamical allocation of servers on the Internet [69]. However, the

technological challenge we confront is multizone temperature control. Achievement

of high performance multizone temperature control is very important in a range of

commercial and industrial applications. For instance, recent work in this area in-

cludes distributed control of thermal processes [38, 18, 39, 40, 19], and semiconductor

processing [42, 43, 44]. Particularly relevant to our work is the study in [39], where

the authors use multivariable distributed control in order to maintain a uniform tem-

perature across a wafer during ramp-up (similar to the control objective we study

here). In [45] the authors describe a lithographical system that is heated by 49 in-

dependently controlled zones. Here, we use a multizone experimental setup that is

similar to the one in [24] where dynamic resource allocation methods are studied.

Our experiments demonstrate how one hive can achieve an IFD that corresponds to

maximum uniform temperatures on the temperature grid. We illustrate the dynamics

of the foraging algorithm by showing how it can successfully eliminate the effects of

ambient temperature disturbances. Moreover, we show that even if two hives have

imperfect information they can be used as a feedback control that will still achieve

an IFD.

The chapter is organized as follows. First, in Section 4.2 we introduce the honey

bee social foraging algorithm. In Section 4.3 we perform a theoretical analysis of
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the hives’ achieved IFD equilibrium. In Section 4.4 we apply the honey bee social

foraging algorithm to a multizone temperature control experiment and show how the

IFD emerges under a variety of conditions.

4.2 Honey Bee Social Foraging Algorithm

Modeling social foraging for nectar involves representing the environment, ac-

tivities during bee expeditions (exploration and foraging), unloading nectar, dance

strength decisions, explorer allocation, recruitment on the dance floor, and accounting

for interactions with other hive functions. The experimental studies we rely on are

summarized in [56]. Our primary sources for constructing components of our model

are as follows: dance strength determination, dance threshold, and unloading area

[70, 71, 63]; dance floor and recruitment rates [57]; and explorer allocation and its

relation to recruitment [72, 73].

4.2.1 Foraging Profitability Landscape

We assume that there are a fixed number of B bees involved in foraging. For i =

1, 2, ..., B bee i is represented by θi ∈ �2 which is its position in two-dimensional space.

During foraging, bees sample a “foraging profitability landscape” which we think of as

a spatial distribution of forage sites with encoded information on foraging profitability

that quantifies distance from hive, nectar sugar content, nectar abundance, and any

other relevant site variables. The foraging profitability landscape is denoted by Jf (θ).

It has a value Jf (θ) ∈ [0, 1] that is proportional to the profitability of nectar at

a location specified by θ ∈ �2. Hence, Jf (θ) = 1 represents a location with the

highest possible profitability, Jf (θ) = 0 represents a location with no profitability,
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and 0 < Jf (θ) < 1 represents locations of intermediate profitability. For θ = [θ1, θ2]
�,

the θ1 and θ2 directions for our example foraging area are for convenience scaled to

[−1, 1] since the distance from the hive is assumed to be represented in the landscape.

We assume the hive is at [0, 0]�.

As an example of the type of foraging profitability landscape we could have four

forage sites centered at various positions that are initially unknown to the bees (e.g.,

site 1 could be at [1.5, 2.0]�). The “spread” of each site characterizes the size of

the forage site, and the height is proportional to the nectar profitability. For exam-

ple, we could use cylinders with heights N j
f ∈ [0, 1] that are proportional to nec-

tar profitability, and the spread of each site can be defined by the radius of the

cylinders εf . Below, we will say that bee i, θi = [θi
1, θ

i
2]

�, is “at forage site 1” if√
(θi − [1.5, 2]�)�(θi − [1.5, 2]�) < εf . We use a similar approach for other sites.

4.2.2 Bee Roles and Expeditions

Let k be the index of the foraging expedition and assume that bees go out at

one time and return with their foraging profitability assessments at one time (an

asynchronous model with randomly spaced arrivals and departures will behave in a

qualitatively similar manner). Our convention is that at time k = 0 no expeditions

have occurred (e.g., start of a foraging day), at time k = 1 one has occurred, and so

on. All bees, i = 1, 2, ..., B, have θi(0) = [0, 0]� so that initially they are at the hive.

Let xj(k) be the number of bees at site j at k. We assume that the profitability

of being at site j, which we denote by sj for a bee at a location in site j, decreases as

the number of bees visiting that site increases. A typical choice [1, 2] is to represent
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this by letting, for each j,

sj(k) =
aj

xj(k)

In this case, we could assume that aj is the number of nutrients per second at the jth

site. With this representation we think of a site as a choice for the hive, with the site

degrading in profitability via the visit of each additional bee, a common assumption

in theoretical ecology. In IFD theory sj is called the “suitability function” [1].

Of the B bees involved in the foraging process, we assume that there are Bf (k)

“employed foragers” (ones actively bringing nectar back from some site and that will

not follow dances). Initially, Bf (0) = 0 since no foraging sites have been found. We

assume that there are Bu(k) = Bo(k)+Br(k) “unemployed foragers” with Bo(k) that

seek to observe the dances of employed foragers on the dance floor and Br(k) that rest

(or are involved in some other activity). Initially, Bu(0) = B, which with the rules

for resting and observing given below will set the number of resters and observers.

We assume that there are Be(k) “forage explorers” that go to random positions in

the environment, bring their nectar back if they find any, and dance accordingly, but

were not dedicated to the site (of course they may become dedicated if they find a

relatively good site).

We ignore the specific path used by the foragers on expeditions and what specific

activities they perform. We assume that a bee simply samples the foraging profitabil-

ity landscape once on its expedition and hence this sample represents its combined

overall assessment of foraging profitability for location θi(k). It is this value that it

holds when it returns to the hive. It also brings back knowledge of the forage loca-

tion which is represented with θi(k) for the kth foraging expedition. Let the foraging
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profitability assessment by employed forager (or forage explorer) i be

F i(k) =




1 if Jf (θ
i(k)) + wi

f (k) ≥ 1
Jf (θ

i(k)) + wi
f (k) if 1 > Jf (θ

i(k)) + wi
f (k) > εn

0 if Jf (θ
i(k)) + wi

f (k) ≤ εn

where wi
f (k) is profitability assessment noise. Here, we let wi

f (k) be uniformly dis-

tributed on (−wf , wf ) with wf = 0.1 (to represent up to a ±10% error in profitability

assessment). The value εn > 0 sets a lower threshold on site profitability. Here,

εn = 0.1. For mid-range above-threshold profitabilities the bees will on average have

an accurate profitability assessment since the expected value with respect to k of

wi
f (k), E[wi

f (k)] = 0. Let F i(k) = 0 for all unemployed foragers.

4.2.3 Dance Strength Determination

Let Li
f (k) be the number of waggle runs of bee i at step k, what is called “dance

strength.” The Bu(k) unemployed foragers have Li
f (k) = 0. All employed foragers

and forage explorers that have F i(k) = 0 will have Li
f (k) = 0 since they did not find

a location above the profitability threshold εn so they will not seek to be unloaded

and will not dance; these bees will become unemployed foragers.

Unload Wait Time

Next, we will explain dance strength decisions for the employed foragers and forage

explorers with F i(k) > εn. To do this, we first model wait times to get unloaded and

how they influence the “dance threshold.” Define Ft(k) =
∑B

i=1 F
i(k) as the total

nectar profitability assessment at step k for the hive. Foragers at profitable sites tend

to gather a greater quantity of nectar than at low profitability sites. Let F i
q(k) be

the quantity of nectar (load size) gathered for a profitability assessment F i(k). We

assume that F i
q(k) = αF i(k) where α > 0 is a proportionality constant. We choose
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α = 1 so that F i
q(k) ∈ [0, 1], with F i

q(k) = 1 representing the largest nectar load size.

Notice that if we let Ftq(k) be the total quantity of nectar influx to the hive at step

k,

Ftq(k) =
B∑

i=1

F i
q(k) = α

B∑
i=1

F i(k) = αFt(k)

so the total hive nectar influx is proportional to the total nectar profitability assess-

ment. Also, Ftq(k) ∈ [0, αB] since each successful forager contributes to the total

nectar influx.

The average wait time to be unloaded for each bee with with F i(k) > εn is

proportional to the total nectar influx. Suppose that the number of food-storer bees

is sufficiently large so the wait time W i(k) that bee i experiences is given by

W i(k) = ψmax
{
Ftq(k) + wi

w(k), 0
}

= ψmax
{
αFt(k) + wi

w(k), 0
}

(4.1)

where ψ > 0 is a scale factor and wi
w(k) is a random variable that represents variations

in the wait time a bee experiences. We assume that wi
w(k) is uniformly distributed

on (−ww, ww). Since Ftq(k) ∈ [0, αB], ψ(αB+ww) is the maximum value of the wait

time which is achieved when total nectar influx is maximum. For the experiments in

[63] (July 12 and 14 data) the maximum wait time is about 30 sec. (and we know

that it must be under this value or bees will tend to perform a tremble dance rather

than a waggle dance to recruit unloaders [56]); hence, we choose ψ(αB + ww) = 30.

Note that ±ψww seconds is the variation in the number of seconds in wait time due

to the noise and ww should be set accordingly. We let ψww = 5 to get a variation

of ±5 seconds. If B = 200 is known, we have two equations and two unknowns, so

combining these we have ψB + ψww = 30, which gives ψ = 25/200 and ww = 40.
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That there is a linear relationship between wait times and total nectar influx for

sufficiently high nectar influxes is justified via experiments described in [63] and [56] p.

112. Deviations from linearity come from two sources, the wi
w(k) noise and the “max”

in Equation (4.1). Each successful forager has a different and inaccurate individual

assessment of the total nectar influx since each individual bee experiences different

wait times in the unloading area. The noise wi
w(k) in Equation (4.1) represents this.

Some foragers can get lucky and get unloaded quickly and this will give them the

impression that nectar influx is low. Other foragers may be unlucky and slow to get

unloaded and this will result in an impression that there is a very high nectar influx.

The Dance Decision Function

Next, we assume that the ith successful forager converts the wait time it experi-

enced into a scaled version of an estimate of the total nectar influx that we define

as

F̂ i
tq(k) = δW i(k) (4.2)

So, we are assuming that each bee has an internal mechanism for relating the wait

time it experiences to its guess at how well all the other foragers are doing [56]. The

proportionality constant for this is δ > 0 and since W i(k) ∈ [0, ψ(αB+ww)] = [0, 30]

sec. we have F̂ i
tq(k) ∈ [0, 30δ].

So, how does total nectar influx influence the dance strength decision, and in

particular the dance threshold? This is explained in on p. 118 in [56]. Here we build

on this by defining a “decision function” for each bee that shows how the dance

threshold for each individual bee shifts based on the ith bee’s estimate of total nectar
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influx. The decision function is

Li
f (k) = max

{
β
(
F i(k) − F̂ i

tq(k)
)
, 0
}

(4.3)

which is shown in Figure 4.1. The parameter β > 0 affects the number of dances

produced for an above-threshold profitability.

L (k)i

F (k)i

F   (k)tq-

F   (k) =    W (k)tq

Slope=

Dance
strength,
number of
waggle
runs

Nectar profitability
for bee i

Nectar influx
increase

Nectar influx
decrease

f

^

^ i

i Dance threshold
for bee i

iδ

β

β

Figure 4.1: Dance strength function.

In Figure 4.1, −βF̂ i
tq(k) is the intercept on the dance strength axis. The diagonal

bold line in Figure 4.1 shifts based on the bee’s estimation of total nectar influx since

this is proportional to F̂ i
tq(k). Notice that since the line’s slope is β, and since we

take the maximum with zero in Equation (4.3), the lowest value of nectar profitability

F i(k) that the ith bee will decide to still dance for is the “dance threshold” F̂ i
tq(k) and

from Equation (4.2), the bee’s scaled estimate of the total nectar influx. Note that

changing β does not shift the dance threshold. The parameter β will, however, have

the effect of a gain on the rate of recruitment for sites above the dance threshold. In
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the case where Ftq(k) = F̂ i
tq(k) = 0 there is no nectar influx to the hive and it has

been found experimentally [56] that in such cases, if a bee finds a highly profitable

site, she can dance with 100 or more waggle runs. Hence, we choose β = 100 so

Li
f (k) = 100 waggle runs in this case. Then, Li

f (k) ∈ [0, β] = [0, 100] waggle runs for

all i and k.

The dance threshold in Equation (4.2) is defined using the parameter δ. What

value would we expect a bee to hold for δ? Since the nectar profitability F i(k) ∈ [0, 1],

δ needs to be defined so that F̂ i
tq(k) ∈ [0, 1] so that the dance threshold is within the

range of possible nectar profitabilities. This means that we need

0 < δ ≤ 1

30
(4.4)

To gain insight into how to pick δ in this range notice that δ is proportional to the

site abandonment rate: (i) if δ ≈ 0, then the dance threshold F̂ i
tq(k) ≈ 0 independent

of wait times and so sites of significantly inferior relative profitability will never be

abandoned, something that does not occur in nature; and (ii) if δ ≈ 1
30

= 0.0333,

then almost all sites are not danced for since the dance threshold is so high and the

foraging process fails completely, something that does not occur in nature. Hence, δ

must be somewhere in the middle of the range in Equation (4.4); in simulations we

tuned the value of δ to match experiments and found δ = 0.02.

Dance/No-Dance Choice

The set of bees that, after dance strength determination as outlined in the previous

section, have Li
f (k) > 0 are ones that consider dancing for their forage site. Here, we

let pr(i, k) ∈ [0, 1] denote the probability that bee i with Li
f (k) > 0 will dance for the
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site it is dedicated to. We assume that

pr(i, k) =
φ

β
Li

f (k)

where φ ∈ [0, 1] (which ensures that pr(i, k) ∈ [0, 1]). We choose φ = 1 since it

resulted in matching the qualitative behavior of what is found in experiments. Hence,

a bee with an above-threshold profitability is more likely to dance the further its

profitability is above the threshold as seen in experiments [56]. In this way, relatively

high quality new discoveries will typically be danced for, but as more bees are recruited

for that site and hive nectar influx increases, it will become less likely that bees (e.g.,

the recruits) will dance for it and this will limit the number of dancers for all sites.

Relatively low quality sites are not as likely to be danced for; however, bees that

decide not to dance will still go back to the site and remain an employed forager for

it. If bee i dances, then it uses a dance strength of Li
f (k). If it does not dance, we

force Li
f (k) = 0 and the bee simply remains an employed forager for its last site. We

let Bfd(k) denote the number of employed foragers with above-threshold profitability

that dance.

4.2.4 Explorer Allocation and Forager Recruitment

Resters and Observers

The bees that either were not successful on an expedition, or were successful

enough to get unloaded but judged that the profitability of their site was below the

dance threshold, become unemployed foragers. Some of these bees will start to rest

and other dance “observers” will actively pursue getting involved in the foraging

process by seeking a dancing bee to get recruited. Here, at each k we let po ∈ [0, 1]

denote the probability that an unemployed forager or currently resting bee will become
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an observer bee; hence 1 − po is the probability that an unemployed forager will rest

or a currently resting bee will continue to rest. It has been seen experimentally [56]

that in times where there are no forage sites being harvested there can be about

35% of the bees performing as forage explorers, but when there are many sites being

harvested there can be as few as 5%. Hence, we choose po = 0.35 so that when all

bees are unemployed, 35% will seek dances.

Explorers and Recruits

Here, we assume that an observer bee on the dance floor searches for dances to

follow and if it does not find one after some length of time, it gives up and goes

exploring. To model explorer allocation based on wait-time cues, we assume that

wait-time is assumed to be proportional to the total number of waggle runs on the

dance floor. Let

Lt(k) =

Bf (k)∑
i=1

Li
f (k)

be the total number of waggle runs on the dance floor at step k. We take the Bo(k)

observer bees and for each one, with probability pe(k) we make it an explorer. We

choose

pe(k) = exp

(
−1

2

L2
t (k)

σ2

)
(4.5)

Notice that if Lt(k) = 0, there is no dancing on the cluster so that pe(k) = 1 and

all the observer bees will explore (e.g., Lt(0) = 0 so initially all observer bees will

choose to explore). If Lt(k) is low, the observer bees are less likely to find a dancer

and hence will not get recruited to a forage site. They will, in a sense, be “recruited

to explore” by the lack of the presence of any dance. As Lt(k) increases, they become

less likely to explore and, as discussed below, will be more likely to find a dancer and
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get recruited to a forage site. Here, we choose σ = 1000 since it produces patterns of

foraging behavior in simulations that correspond to experiments.

The explorer allocation process is concurrent with the recruitment of observer bees

to forage sites. Observer bees are recruited to forage sites with probability 1 − pe(k)

by taking any observer bee that did not go explore and have it be recruited. To

model the actual forager recruitment process we view Li
f (k) as the “fitness” of the

forage site that the ith bee visited during expedition k. Then, the probability that an

observer bee will follow the dance of bee i is defined to be

pi(k) =
Li

f (k)∑Bf (k)
i=1 Li

f (k)
(4.6)

In this manner, bees that dance stronger will tend to recruit more foragers to their

site.

4.2.5 Discussion

We have conducted extensive simulations to validate the qualitative characteris-

tics of our model of social foraging by honey bees. In particular, we have shown that

the model represents achievement of the IFD of foragers per relative site profitabil-

ities [56] for a range of suitability functions, “cross-inhibition” seen in [57, 48] (the

main experiments used in model validation for all other bee foraging models discussed

earlier), reallocation when new forage sites suddenly appear or disappear, or when

site qualities change [56, 57, 48]. In the interest of brevity we do not include these

simulations here since: (i) our focus is not on model validation (i.e., accurate repre-

sentation of numerical data from experiments on honey bee social foraging) but on

bioinspired design based on the main algorithm features; and (ii) the key qualitative
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features of the allocation dynamics are all illustrated in our implementation of the

bee algorithm for multizone temperature control in the next section.

4.3 Equilibrium Analysis of Hive Allocations

In Section 4.2 we explained how the honey bee social foraging algorithm achieves

the ideal free distribution (IFD). In this section we prove that the hives’ IFD is a

global optimum point. For that, some assumptions have to be made. In the previous

section we saw how bees in different roles were allocated to different forage sites by

their behavior in the hive. In the following analysis we assume that there exists a

fixed number of hives n in an environment, that each hive contains a fixed amount

of employed forager bees Bi
f , i = 1, 2, . . . , n, and that all bees are allocated to N

different sites (i.e., we ignore the components of the process associated with searching

for forage sites).

4.3.1 The n-Hive Game

Nash Equilibrium

Let xi
j > 0 denote the number of bees that the ith hive allocates to the jth (forage)

site choice, where i = 1, 2, . . . , n, and j = 1, 2, . . . , N . We assume for simplicity that∑N
j=1 x

i
j = Bf , for all i, is the total amount of bees the ith hive can allocate. Also,

assume that aj > 0 is the constant quality of site j (e.g., in the classical IFD it

is the input rate of nutrients to the jth site, in applications, this constant could be

proportional to site profitability). Hence, in an n-hive game each hive has N pure

strategies corresponding to choosing the sites j = 1, 2, . . . , N . But the strategy is the
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number of bees it allocates to each site, or for hive i, the strategy is

xi =
[
xi

1, x
i
2, . . . , x

i
N

]�
where

∑N
j=1 x

i
j = Bf , for each i = 1, 2, . . . , n. Notice that xi is an element of the

simplex

∆x =

{
x = [x1, . . . , xN ] :

N∑
j=1

xj = Bf , xj ≥ 0, j = 1, 2, . . . , N

}

The strategy x = [x1, x2, . . . , xn]
�

is a Nash equilibrium if the following is valid for

all yi �= xi, i = 1, 2, . . . , n,

f
(
yi|x−i

) ≤ f
(
xi|x−i

)
(4.7)

where x−i denotes the vector of all other strategies except strategy xi, and f(·, ·) is

the fitness payoff. Equation (4.7) means that the hive must allocate the bees using

the optimum strategy x so that its gain is maximum in terms of fitness payoff. Notice

that if the inequality in Equation (4.7) is strict, we have what is called a strict Nash

equilibrium.

Evolutionarily Stable Strategies (ESS) for a Finite Population of Hives

The original formulation of an evolutionarily stable strategy (ESS) introduced

in [10, 11] assumes that the population size (number of hives) is infinite and hence

does not apply here. There have been a number of studies that treat the ESS concept

for a large and finite population sizes (e.g., [74, 75, 76]). However, the seminal work is

contained in [68, 67] where the authors state the equilibrium and stability conditions

similar to the ones defined in [14]. The n-hive game that we set up in this case can be

seen as a game “against the field” [11] i.e., the population size is equal to the contest

size. We can define the ESS for finite populations as follows.
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Definition 4.3.1 Let y be a mutant strategy, and Px,y a population set made up of

n − 2 x-strategists and only one y-strategist. Let f(y, Px) be the fitness of a single

y-strategist in a population set Px of n−1 x-strategists. The mixed incumbent strategy

x = [x1, x2, . . . , xn]
�

is one-stable ESS if the following condition holds:

f(y, Px) < f(x, Px,y) (4.8)

for all y �= x.

This is what is known as the equilibrium condition for the game against the field for

a finite population size [67]. It is clear that this condition only tests if the population

of hives cannot be invaded by only one mutant. If we have more than one mutant,

we have to check another condition. This condition is usually known as the stability

condition, and it says that a strategy is Y -stable if the incumbent strategy cannot be

invaded by a total of up to Y identical mutant strategists [67]. It is said that the ESS

is globally stable whenever Y = n−1. Here, we assume that there is only one mutant

since mutants are rare; hence, we do not need to check the stability condition.

Hive/Bee Fitness Definitions

Before we show that the IFD is a strict Nash equilibrium, we need to define the

payoff of hive i. First, let us define the contribution to the fitness of hive i at site j

as

f i(j) = aj

xi
j∑n

k=1 x
k
j

= aj

xi
j

xi
j +

∑n
k=1,k �=i x

k
j

(4.9)

Equation (4.9) can be divided in two parts. First, we have the proportion of bees

allocated by the ith hive to site j, with respect to the total number of bees allocated

to that site by all hives. Then, there is the aj term that can be seen as a constant
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that is proportional to the profitability of the site. If aj is in nutrients per second,

then this quantity is the amount of nutrients per second hive i gets for investing xi
j

bees at site j, while the other n − 1 hives invest
∑n

k=1,k �=i x
k
j bees at the same site.

Hence, the fitness (payoff) of hive i, i = 1, 2, . . . , n, is

f i =
N∑

j=1

f i(j) =
N∑

j=1

xi
j

aj∑n
k=1 x

k
j

(4.10)

The IFD is achieved when the fitness of hives i and i′ are equal, for all i �= i′, as in

f i =
N∑

j=1

f i(j) =
N∑

j=1

f i′(j) = f i′ (4.11)

Using Equation (4.10), Equation (4.11) can be satisfied if the hive allocate bees equally

in every site so that

xi
j = xi′

j (4.12)

for all i, i′ = 1, 2, . . . , n. If each hive chooses the IFD, then for each i = 1, 2, . . . , n,

for j = 1, 2, . . . , N ,

xi
j∑N

k=1 x
i
k

=
aj∑N

k=1 ak

(4.13)

Notice that since
∑N

k=1 x
i
k = Bf for all i = 1, 2, . . . , n, Equation (4.12) holds. Equa-

tion (4.13) is a generalization of the input matching rule [4, 9] to the n-hive game. In

Chapter 2 the authors have shown the equivalence between the input and the habitat

matching rule for a general case of suitability functions. We can use the same ideas

as in Chapter 2 to prove that Equation (4.13) can also be written as

xi
kaj = xi

jak

for all k, j = 1, 2, . . . , N , and i = 1, 2, . . . , n.

Equation (4.9) defines the fitness for multiple hives. However, when there is only

a single hive, the definition for the payoff changes. For that, we can assume that each
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bee is identical and represented by a small εx > 0 so that there is an arbitrarily large

(integer) number n > 0 of bees in the hive, where

nεx = Bf

Given the concept of an individual bee εx > 0 at site j, j = 1, 2, . . . , N , we define

this bee’s fitness as f(j) =
aj

nj
. If aj is nutrients per second, f(j) is the number of

nutrients per second that a bee gets at site j. Notice that

f(j) =
aj

nj

= εx
aj

εxnj

= εx
aj

xj

(4.14)

These ideas will be helpful in Section 4.3.3.

4.3.2 The Multiple Hive IFD is a Strict Nash Equilibrium
and ESS

In the next theorem2 we show that the IFD in Equation (4.13) is a strict Nash

Equilibrium. This implies by Equation (4.8) that the IFD is a one-stable ESS, because

the IFD is the best strategy whenever one mutant hive plays against n−1 incumbents

in an n-hive game.

Theorem 4.3.1 For the n-hive game if the xi
j, j = 1, 2, . . . , N , i = 1, 2, . . . , n, are

all given by the IFD in Equation (4.13), then hives are using a strict Nash equilibrium

strategy to allocate the bees. Hence, the IFD in Equation (4.13) is a finite population

one-stable ESS.

This result shows that if the IFD is used by all hives, no hive can unilaterally deviate

and improve its fitness. While the IFD is often discussed as if it were with respect

2Proofs of all theorems are in the Appendix.
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to a number of animals (e.g., bees) being allocated (e.g., see [2]), this seems to be

the first proof that in an n-hive game the IFD is a strict Nash equilibrium (hence, a

one-stable ESS). It is interesting to note that if we think of achievement of Equation

(4.13) by each hive as “individual-level” IFD achievement, then for all j = 1, 2, . . . , N ,

and i = 1, 2, . . . , n,

xi
j

N∑
k=1

ak = aj

N∑
k=1

xi
k

and if we sum over i, (
n∑

i=1

xi
j

)(
N∑

k=1

ak

)
= aj

(
n∑

i=1

N∑
k=1

xi
k

)

or for all j = 1, 2, . . . , N ,

∑n
i=1 x

i
j∑n

i=1

∑N
k=1 x

i
k

=
aj∑N

k=1 ak

(4.15)

Equation (4.15) can be interpreted as a “hive population-level” or “environment-wide”

IFD. Clearly, however, Equation (4.13) is only one way to achieve this population-

level IFD (as the next example will show). Finally, note that there may be strategies,

not all the same and different from the IFD in Equation (4.13), but that the hives

could use and (i) still get the same fitness as each other and as the fitness achieved

at the IFD in Equation (4.13), and (ii) achieve the population-level IFD in Equation

(4.15). For example, if N = n = 2, Bf = 1, a1 = a2 = 1, x1
1 = x2

2 = 1
4
, and

x1
2 = x2

1 = 3
4
, f 1 = f 2 = 1 and this is the same fitness that results if the xi

j = 1
2

j = 1, 2, i = 1, 2, IFD strategy from Equation (4.13) is used. Also, Equation (4.15)

holds for the alternative strategy choice.
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4.3.3 Optimality of the Single and Multiple Hive IFD

The results in Section 4.3.2 show that the IFD is a local optimum point in a

game-theoretic sense. Here, we show that the IFD is a global optimum point for both

a single hive and multiple hives.

Single-Hive Allocation

First, we take the perspective that a single hive wants to allocate some number

of bees Bf to N choices (sites) in order to optimize its payoff (fitness). We drop the

superscript and use xj. The percentage of the total number of bees to site j is
xj

Bf
,

j = 1, 2, . . . , N . Using Equation (4.14), the total payoff can be written as,

J =
N∑

j=1

(
xj

Bf

)(
aj

xj

)
=

∑N
j=1 aj

Bf

(4.16)

Due to the cancellation of the xj in Equation (4.16), J is a constant. Hence, any

allocation involving all xj nonzero gives the same total return to the hive. This is

a consequence of the “continuous input” assumption for the IFD formulation that

says that all nutrients arrive at a constant rate and are immediately consumed [1].

Equation (4.16) also shows that a hive cannot use the strategy of maximizing J in

order to determine how to allocate the number of bees. Does there exist a payoff

function that the hive can try to optimize that does guide it to maximize its payoff?

Next, we show two approaches to answer this question.

First, assume that aj > 0, xj > 0, and note that
aj

xj
is the return per investment of

xj. Suppose that the hive wants to maximize its return from each investment, under

the constraint that
∑N

j=1 xj = Bf and xj > 0. One approach is to try to maximize the
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minimum fitness as defined by Equation (4.14), i.e., solve the optimization problem

max min
{

a1

x1
, a2

x2
, . . . , aN

xN

}
subject to

∑N
j=1 xj = Bf

xj > 0, j = 1, 2, . . . , N

(4.17)

The terms εx
aj

xj
are the fitnesses for any bee that chooses site j, j = 1, 2, . . . , N .

Consider a single individual εx > 0. If this bee is at site j and εx
aj

xj
< εx

ak

xk
, j �= k,

then it can move to site k (i.e., change strategies). The “max min” represents that

multiple bees simultaneously shift strategies to improve their fitness since at least

some bees with lowest fitness shift sites (and if εx
aj

xj
= εx

ak

xk
for some j and k the

min can be achieved at multiple sites). It has been shown in Chapter 2 that the

hive should invest its effort according to an IFD as it is the global maximum for that

optimization problem and hence will maximize the hive’s payoff.

Second, viewing the hive’s effort allocation strategy as being adaptive (i.e., shaped

by natural selection) it makes sense that it would be appropriately modeled as the

optimization of some payoff (fitness) [29]. However, could other payoff functions be

used besides the one in Equation (4.17)? Generally, the answer to this question should

be yes. Equation (4.17) relates decision variables xj to payoff J and other equally valid

relationships between these two could lead to optimal effort distributions, possibly

even the IFD. To illustrate this point in a concrete way we introduce another candidate

payoff function J .

To develop this J suppose that aj > 0 and xj > 0 for j = 1, 2, . . . , N , and note

that
xj

aj
is the amount of bees allocated to site j per the return from site j. For

instance, if aj is in units of nutrients per second, and a hive allocated xj in units of

“bees per second” it takes of the nutrients, then
xj

aj
is in units of bees per nutrients.

A hive wants to invest as few as possible bees, yet get as much return as possible.
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Hence, it wants to allocate bees so that it gets as many nutrients per bee as possible.

If
xj

Bf
is the percentage of the total number of bees allocated to site j, and if the hive

tries to minimize

J =
N∑

j=1

(
xj

Bf

)(
xj

aj

)
=

1

Bf

N∑
j=1

x2
j

aj

(4.18)

then it will maximize its return on investment by minimizing its losses. Or, from

another perspective, it minimizes the average number of bees per nutrient across all

sites. The next result shows that if a hive seeks to minimize J in Equation (4.18),

then it will achieve an IFD.

Theorem 4.3.2 The point

xj =
ajBf∑N
k=1 ak

is the global minimizer for the constrained optimization problem defined as

minimize J = 1
Bf

∑N
j=1

x2
j

aj

subject to
∑N

j=1 xj = Bf

xj > 0, j = 1, 2, . . . , N

Multiple Hive Allocations

Theorem 4.3.2 shows that the IFD is achieved for a single-hive allocation. Now,

we want to prove that the IFD is also reached for the case when we have multiple

hives that want to allocate bees across different sites. From the proof of Theorem

4.3.1 it should be clear that there are an infinite number of points xi
j, j = 1, 2, . . . , N ,

i = 1, 2, . . . , n, that result in

∑n
i=1 x

i
j∑N

k=1

∑n
i=1 x

i
k

=
aj∑N

k=1 ak

(4.19)
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which is the achievement of an IFD by the aggregate of the number of bees’ allocation.

In the next theorem, we show that the optimum payoff value is given by what we call

the population-level IFD in Equation (4.19).

Theorem 4.3.3 If the population IFD is achieved by the distribution of the bees that

achieve Equation (4.19) then, if one of the n hives deviates and the others stay the

same, the one that deviates cannot improve its payoff.

The optimization problem can be interpreted as one hive allocating some number

of bees at the site where n− 1 hives have allocated the bees in such a way that they

are at the IFD. For each hive, the total number of bees across the N sites is equal to∑N
j=1 x

i
j = Bf , for all i = 1, 2, . . . , n. Since the n − 1 are at the IFD, it is clear that

if we add an nth hive, it can allocate all its bees across the N sites using a strategy

that leads to the population-level IFD. In other words, this last hive that disrupts

everybody else’s return gets the same payoff that all the other hives get if it plays a

strategy such that the population-level IFD is achieved.

4.3.4 Discussion

The previous analysis is based on the hypothesis that we have full static infor-

mation. This means that we did not analyze the cases where there is noise, lack of

information when strategies are chosen, or when the fitness functions in (4.9) or (4.14)

have dynamics. Analysis for these cases remains a (challenging) research direction.

In the next section, we motivate the importance of addressing these theoretical ques-

tions by showing that multiple poorly informed socially foraging honey bee hives can

achieve an IFD in an application where there is significant noise.
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4.4 Engineering Application: Dynamic Resource Allocation
for Multizone Temperature Control

In this section we introduce an engineering application that illustrates the ba-

sic features of the dynamical operation of the honey bee social foraging algorithm.

First, we describe the hardware used and some implementation issues. Next, we pro-

vide data from three experiments that demonstrate the achievement of the ideal free

distribution and the effects of cross-inhibition and imperfect information flow.

4.4.1 Experiment and Honey Bee Social Foraging Algorithm
Design

We implemented the multizone temperature control grid shown in Figure 4.2. A

zone contains a lamp and a National Semiconductors LM35CAZ temperature sensor.

The temperature is acquired using 4 analog inputs with 16 bits resolution each on a

dSPACE DS1104 card. Although we cannot guarantee that the four sensors have the

same characteristics, they have ±0.2◦C typical accuracy, and ±0.5◦C guaranteed. The

lamps are turned on or off by the controller using four analog outputs of the DS1104

card and a DS2003 Darlington device that drives the amount of current necessary to

turn on a lamp. The lamps change their intensities drastically when we apply more

than 1.6 Volts. We added by software a DC value of 1.25 Volts, which implies that

there is a range where the lamps are off even if we allocate a small amount of energy

in a zone.

We assume that there is a fixed total amount of voltage Vtot (the resource) that

can be split up and applied to the zones. The goal is to allocate this fixed amount of
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Figure 4.2: Layout for the multizone temperature control grid experiment.

voltage in a way that (i) makes the temperatures in all zones the same, and (ii) max-

imally elevates the temperature across the grid. In other words, we want a maximum

uniform temperature. Achievement of this goal is complicated by interzone effects

(e.g., lamps affecting the temperature in neighboring zones), ambient temperature

and wind current challenges (from overhead vents), zone component differences, and

sensor noise. These effects demand that voltage be dynamically allocated. For exam-

ple, if there is an ambient temperature increase in zone 4 in Figure 4.2 the voltage

applied to the lamp in zone 4 should decrease and that voltage should be allocated

across the other three zones.

Given the hardware description and the model, we choose a honey bee social

foraging algorithm as follows:

1. We assume that there are a fixed number of bees involved in the foraging process,

B. Each bee corresponds to a quanta of energy, which in this case corresponds

to a certain amount of volts, of the Vtot available volts, that will be specified

below.

2. We assume that the foraging landscape is composed of four forage sites, which

correspond to the zones j, j = 1, 2, 3, 4.
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3. Let Td be a temperature value that cannot be achieved in the experiment (here

we use Td = 29◦C). Let Tj be the temperature in zone j, and let

ej = Td − Tj

be the temperature error for zone j. We assume that the “best” (most prof-

itable) forage site corresponds to the zone that has the highest error. Bees

(quanta of voltage) that are allocated to better sites will raise the tempera-

ture there. Repetitive allocation will result in persistently raising the minimum

temperature.

4. We assume that the profitability assessment of each site F j(k) is proportional

to ej and given by

F j(k) =




1 if ej(k) ≥ 1
γej(k) if εn < γej(k) < 1
0 otherwise

(4.20)

We let γ = 1
8

since given Td the temperature error ej < 8◦C so γej < 1 with

γ = 1
8
. Then we know that F j(k) ∈ [0, 1]. We let εn = 0.1 since this means that

sensor inaccuracies are not interpreted as profitability differences and, so that

with Td = 29◦C any temperature error is profitable for allocation.

5. The waiting time defined in Equation (4.1) has two tunable parameters, ψ and

ww. In this case, we have tuned these values and we chose ψ = 0.25 and

ww = 20.

6. We also chose α = 1, φ = 1, po = 0.35, σ = 1000, δ = 0.02, and β = 100 to

ensure that bees are persistently recruited to achieve the bee (voltage) allocation

and persistently explore sites for more temperature error. The particular values
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chosen were explained in Section 4.2, and these values did not need to be retuned

for the application.

The experimental results shown below were obtained on different days with different

ambient room temperatures.

4.4.2 Experiment 1: One Hive IFD Achievement

In this experiment we seek the maximum uniform temperature when we have

Vtot = 2.5 Volts of resource available. We assume that there is one hive that has 200

bees, which are equivalent to Vtot. In other words, we assume that each bee is equiv-

alent to 0.0125 Volts. Figure 4.3 shows the experimental results for the temperatures

(top plots), and the numbers of bees allocated in each zone (bottom plots), when the

room temperature is Ta = 22◦C.

Figure 4.4 illustrates how the bees are allocated to various roles. The top plot

shows how the number of employed foragers Bf increases drastically at the beginning,

but then it drops until it arrives to a steady-state. The bottom plot shows the number

of explorers Be, and we can see how it stays high to ensure persistent search for

temperature error. From the data obtained, it can also be seen that many bees get

recruited. This implies that these bees find a site and they do not abandon it, which

provides good temperature regulation.

Figure 4.7, which will be used to compare the results of all the experiments, shows

the average temperature (top plot) and the average number of bees (bottom plot) for

the last 100 seconds. The data for experiment 1 show how an ideal free distribution

is achieved. As we can see, the final temperature reached by all zones is around 27◦C.

In terms of the average number of bees for the last 100 seconds, we can see that the
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voltage allocated is around 1.7 Volts (DC offset included), which is equivalent to 35

bees per zone. However, due to the differences between sensors and lamps, more bees

are allocated in the fourth zone (i.e., zone 4 is more difficult to heat). This result is

consistent with the experimental results shown below.
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Figure 4.3: Temperature and number of bees per zone when there is one hive and no
disturbances. The top plots show the temperature in each zone, and the average of
the last 100 seconds (solid constant line). The stems in the bottom plots represent
the number of bees that were allocated to each zone.

4.4.3 Experiment 2: One Hive with Disturbances, IFD, Cross-
Inhibition, and Site Truncation

The second experiment is similar to the first one, but we add two disturbances

to the system. These disturbances are created by two extra lamps, one placed next

to zone 1 and another placed next to zone 4. We start the experiment at a room
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Figure 4.4: Number of employed foragers Bf and the average of the last 100 seconds
(top plot). The bottom plot shows the number of explorers Be and the average of the
last 100 seconds.

temperature of Ta = 20.6◦C. Figure 4.5 shows the results. The numbers in the top

left and top right plots represent the disturbance types applied to the system:

1. We turn on the disturbance lamp next to zone 4 at t = 850 sec, and we turn it

off at 1170 sec.

2. We turn on the disturbance lamp next to zone 1 at t = 2160 sec, and we turn

it off at 2500 sec.

3. We turn on the disturbance lamps next to zones 1 and 4 at t = 3200 sec, and

we turn them off at 5400 sec.

When we apply disturbance 1, the temperature in zone 4 starts to increase, and the

number of bees allocated in that zone decreases drastically. At the same time, the
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number of bees in the other three zones increases. This is because site number 4 is

the least profitable of all sites, and hence the hive reallocates the bees to the other 3

zones; this is why the temperatures in zones 1, 2, and 3 increase until the disturbance

is turned off. At that moment, the temperature in zone 4 drops drastically, and the

hive realizes that it must allocate more bees to that site. It does that until all four

zones are practically at the same temperature. During the 5 minutes of disturbance,

the temperatures in zones 2 and 3 remain close to 25.5◦C, while the temperature

in zone 1 is around 25.4◦C. Therefore, zone 1 becomes the most profitable one, and

hence more bees are allocated to that site (around 76 bees were allocated on average

to zone 1, while 37, 41, and 10 bees were allocated on average to zones 2, 3, and 4,

respectively). The same basic behavior occurs when disturbance 2 is applied to the

system. In this case, the temperature at the first site increases to 27◦C, while the

other temperatures were close to 25.6◦C. As in the previous case, the temperature in

zone 4 was close to 25.5◦C, which implied that more bees were allocated to this site

(5, 33, 33, and 93 bees were allocated on average to zones 1 through 4 respectively).

We highlight the fact that zone 4 has more bees than the middle zones. As we

mentioned in Section 4.4.2 this is due to the differences between sensors and lamps.

After disturbance 2 is turned off and the temperatures in all zones was practically

the same (i.e., around 25.4◦C), we apply disturbance 3 and for it the temperatures

equilibrate but with a bee allocation where there are far fewer bees in zones 1 and 4

and more in zones 2 and 3. To see why this is the case, see the experiment 2 data

in Figure 4.7. As we can see in the bottom plot, the average number of bees for the

last 100 seconds is practically the same for the middle zones (34.8 bees), and there

are practically the same number of bees allocated to zones 1 and 4 where there is
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a disturbance (10 bees). This leads to a final temperature that is practically the

same for zones 1 and 4 (i.e., around 28.6◦C) and for the middle zones (i.e., around

28◦C). However, as we mentioned before, the fact that there are 10 bees in a zone

does not necessarily imply that the lamp is on. In this case, 10 bees corresponds to

0.125 Volts, which implies that the lamp is off (recall that the DC value was 1.25

Volts). Therefore, the bees allocated to zones 1 and 4 do not have any influence on

the temperature. Only the disturbances affect these temperatures. Hence the residual

number of 10 or so bees simply represents that the hive is continually sampling these

sites in case they become profitable.
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Figure 4.5: Temperature and number of bees per zone for the second experiment. In
the top plot the solid constant line represents the average of the last 100 seconds in
each zone. The numbers 1, 2, and 3 correspond to the disturbances. The stems in
the bottom plot represent the number of bees that were allocated to each zone.
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4.4.4 Experiment 3: Two Hives and Imperfect Information

In this final experiment, we change the conditions and instead of using only one

hive, we assume that we have two hives each with limited information. The first hive

is assumed to only have access to the temperatures in zones 1, 2, and 3, while the

second hive has access to the temperatures of zones 2, 3 and 4. This may happen in

nature if a hive has not discovered a site. In temperature control applications such

sensing restrictions commonly arise due to sensor or other hardware costs.

Each hive is composed of 200 bees, which implies that the 5 Volts that we allocate

corresponds to 400 bees (i.e., each bee corresponds again to 0.0125 Volts). Figure 4.6

shows the results for this case when the initial temperature in the room Ta = 19.6◦C.

The final temperature is practically the same, around 25.4◦C. The main difference in

this case is that the number of bees in zones 2 and 3 depend on both hives (see the

bottom plot of Figure 4.6). Hive 1 allocates on average around 50 bees to zones 2

and 3, while the second hive allocates on average around 20 bees to zones 2 and 3.

However, as we can see in the experiment 3 data in the bottom plot of Figure 4.7,

the same total amount of bees are allocated by the two hives except for zone 4. It is

important to notice that the difference between the initial temperature and the final

temperature in the first experiment is around 5◦C, while in this case is around 6◦C.

Therefore, as we expect, the maximum temperature reached by the grid is higher

than the first one if we compare the temperatures relative to room temperature. This

is mainly due to the fact that at the end we are allocating more bees per zone, i.e.,

more voltage Vtot = 5V rather than in experiments 1 and 2 where we had Vtot = 2.5V .

Finally, another important issue that arises in this case is the number of bees that
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are allocated to zone 4. Besides the fact that there is a difference between sensors

and lamps in zone 4 with respect to the other zones (as it was seen in the previous

experiments), there is imperfect information. As we can see, hive 1 allocates more

bees to zones 2 and 3 compared to the number allocated by hive 2. This implies

that the temperature errors in these zones decrease, while the temperature in zone 4

seems to be lower than the middle zones due to sensor differences. Then, the second

hive allocates more bees to the most profitable site (zone 4), and less to zones 2 and

3 (these zones receive more bees from hive 1, and its total value is similar to the

number of bees allocated in zone 1). The bottom plot in Figure 4.6 illustrates this

point.
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Figure 4.6: Temperature and number of bees per zone for the last experiment. In the
top plot the solid constant line represents the average of the last 100 seconds in each
zone. In the bottom plot, “o” corresponds to the bees that were allocated by the first
hive, while “x” corresponds to the bees that were allocated by the second hive.
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Figure 4.7: The top plot shows the final temperature, while the bottom plot shows
the final value for the number of bees in each zone for each experiment. This final
value corresponds to the average for the last 100 seconds of data. In each experiment,
zone 1 corresponds to the left bar, and zone 4 to the right bar for each of the 3 groups
of four bars.

4.4.5 Discussion

Some of the main concepts described in social foraging modeling section (Sec-

tion 4.2) can be seen in these experiments. In Section 4.4.2 we have seen how an IFD

is reached by all zones, and good regulation is obtained even though the search space

is limited (Section 4.4.4). As shown in Section 4.4.3, an IFD is also reached when

disturbances are applied to the system. The IFD obtained is in terms of the number

of bees allocated to each of the zones, depending on whether the disturbance is on

or not. In other words, the middle zones that are not significantly affected by any

type of disturbance increase their temperature to their maximum possible value. This

maximum depends on the amount of energy available. This energy is practically the
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same in each zone, which leads to uniformity in these zones. The other two zones have

a disturbance associated with each of them, which implies that the number of bees

allocated to each of these zones must be lower than for the middle ones. As we expect,

the final temperature in this case is higher than in the first experiment because of

the disturbances, and the numbers of bees allocated to the middle zones are higher

than in the previous case (see Figure 4.7). If we had reduced the magnitude of the

disturbances in zones 1 and 4 then we would have gotten results analogous to those

for disturbances 1 and 2. We chose the particular disturbance magnitudes in order

to illustrate the elimination of zones 1 and 4 as possible sites (site “truncation” [1])

and how the hive can then focus most of its attention on only the best sites.

Another important idea that is illustrated in these experiments is the cross-

inhibition concept [56], and this can be seen in Figure 4.5. First, all zones were

under the same conditions, and practically the same number of bees visited sites 1,

2, and 3 (45, 31, 34 visited on average zones 1 through 3, respectively, while 60 bees

where allocated to zone 4 due to sensor differences). When disturbance 1 is applied,

more bees start visiting sites 1, 2, and 3, while the number of bees in zone 4 reduces

drastically. The same thing happens when disturbances 2 and 3 are applied. It is clear

that in any of these cases one or two zones becomes less profitable (the temperature

increases due to the disturbance, and hence the error decreases), which implies that

the hive has to reduce the number of bees recruited to these poorer sites. This is given

in the algorithm by a reduction of the number of dances for those zones where the

error is smaller, which leads to a reduction in the number of bees that are recruited

to these sites.
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Experiment 3 shows how another IFD is achieved over all zones, even though

there is not perfect information (see Figure 4.7). As we can see in Figure 4.6, the

final temperature in all zones is practically the same (taking into account the sensor

differences accuracy). However, as we mentioned before, hive 2 must use more of its

bees to raise the temperature in zone 4, and that is why the number of bees allocated

by this hive to zones 2 and 3 is small. This problem can be seen also as having a zone

with a disturbance. In this case, zone 4 needs more energy, which implies that more

bees are allocated by the second hive to it. Thus, the middle zones are not visited

as much by the bees since they are less profitable. They are also not as profitable as

zone 1, and that is why a smaller amount of bees are allocated to zones 2 and 3 by

hive 1 (compared to those that are allocated in zone 1 as it can be seen in the bottom

plot in Figure 4.6). However, the total number of bees (those allocated by hives 1

and 2) leads to practically the same numbers of bees in zones 2 and 3, and the grid

reaches a maximum uniform temperature.

In all these cases, the temperature grid reached an equilibrium. If we compare the

experimental results with the theoretical results (Section 4.3), we can see that the

equilibrium point for the first experiment is similar to what is shown in Theorem 4.3.2.

In this case, the aj can be seen as the temperature error, because it is clear that the

hive will allocate more bees where the error is higher. For the last experiment a

population level type IFD as in (4.19) is achieved, again with aj proportional to the

temperature error. We have proven in Theorem 4.3.3 that the IFD was the optimum

point, and the experiments illustrate that this equilibrium was reached for n = 2

hives.
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4.5 Conclusions

We have developed an engineering application that highlights the main features

of a honey bee social foraging algorithm. The application that we have used is a

multizone temperature control grid, where the control objective is to seek the maxi-

mum uniform temperature. Three experiments illustrate dynamic re-allocation, cross-

inhibition, and the ideal free distribution (IFD).

One of the most important concepts in this chapter is the IFD concept from

theoretical ecology. We have shown that the IFD is a strict Nash equilibrium for

an n-hive game and a one-stable ESS. In other words, in an n-hive game the IFD

is reached whenever n − 1 hives are using it as a strategy and only one hive is not

using it. This hive has to choose the IFD strategy to obtain as much as the other

hives. Since this is only a local concept, we extend our results to show that the IFD

is a global optimum point for both a single hive and multiple hives. In this case we

have limited our analysis to an optimality perspective. It is our intent to develop in

the future a dynamical model of IFD achievement (e.g., adaptive dynamics such as a

replicator dynamics model [14]).

Finally, it is clear that in the implementation we have limited our system and

drawn some analogies that might not seem real from a biological perspective. For in-

stance, consider the information structure of the algorithm (i.e., what characteristics

are present to provide information to the algorithm and between components of the

algorithm). In a honey bee hive, the forage allocation process does not need a cen-

tralized entity that makes the decisions and allocates bees to each site, i.e., the hive

is a decentralized system [56]. However, if we analyze the honey bee social foraging

94



algorithm, and more precisely Equations (4.1), (4.5) and (4.6), it is clear that the

algorithm is not totally “individual-based” (e.g., Equation (4.5) has to know a noisy

version of the total number of waggle runs in order to decide how many observer

bees will become an explorer). It is our intent to consider in the future a more fully

distributed version that faithfully respects what is known by individuals.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Summary of Contributions

The dissertation starts by analyzing the ideal free distribution (IFD) for a general

class of suitability functions. It has been proven that the habitat and input matching

rules are equivalent for this general case, and also that the IFD is indeed an evo-

lutionarily stable strategy (ESS). In order to provide global results, a constrained

optimization is defined and it is proven that the IFD is a global optimum point.

Then, from an evolutionary time perspective, a replicator dynamics model is defined

in order to show that the IFD is an asymptotically stable equilibrium point. An

interesting characteristic for this case is that under some constraints, a gradient opti-

mization perspective leads to the same replicator dynamics. In order to provide more

insight on why these allocation dynamics are useful from an engineering perspective,

a multizone temperature control problem is used to show how in spite of limiting the

input voltage, a uniform temperature in each of four temperature zones is achieved.

In Chapter 3 another type of multizone temperature control is used to show the

utility of foraging theory. A controller is thought of as an agent searching for error

across the grid, and it uses the prey model algorithm to decide which types of error
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to actuate with a lamp to achieve a uniform desired temperature across the grid.

The algorithm causes the controller to ignore certain types of error when the missed

opportunity of more profitable types is too great to forgo. Results show that the

controller does very well in tracking desired temperatures, even in the presence of

disturbances and sensing limitations. The results also illustrate a connection between

the prey model and the ideal free distribution. The desired temperature is reached

in all three experiments by the foragers allocating themselves in the zones where the

error is higher.

Finally, in Chapter 4 an engineering application is developed in order to highlight

the main features of a honey bee social foraging algorithm. The application that is

used is a multizone temperature control grid, where the control objective is to seek the

maximum uniform temperature. The experiments illustrate dynamic re-allocation,

cross-inhibition, and the ideal free distribution (IFD). In contrast to Chapter 2, it

has been shown that in an n-hive game the IFD is reached whenever n− 1 hives are

using it as a strategy and only one hive is not using it. Therefore, it has been proven

that the IFD is a strict Nash equilibrium but for an n-hive game and a one-stable

ESS. This hive has to choose the IFD strategy to obtain as much as the other hives.

The local concept is extended to show from an optimality perspective that the IFD

is a global optimum point for both a single hive and multiple hives.

5.2 Future Directions

The most important future directions that arise in this work can be summarized

as follows:
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1. Evaluate the relative advantages and disadvantages of other control-theoretic

approaches for solving dynamic resource allocation problems such as the multi-

zone temperature control problem studied here.

2. Use other foraging theory concepts such as the patch model to determine how

long to process certain error types and risk-sensitive foraging theory to decide

which types to process when time is limited. Moreover, there is a need to

mathematically analyze the stability of the controller; however, this is quite

challenging due to the need to consider sensor noise, disturbances, lack of perfect

information (i.e., decentralized control), asynchronous operation, and the fact

that the control input is of the on-off type that is constrained so that only a

limited number of zones can be heated at one time.

3. Consider a more fully distributed version of the honey bee social foraging algo-

rithm that faithfully respects what is known by individuals.

4. Develop a dynamical model of IFD achievement (e.g., adaptive dynamics such

as a replicator dynamics model [14]).
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APPENDIX A

APPENDIX: PROOF OF THEOREMS

A.1 Proof of Theorem 2.2.1

For (2.4) ⇒ (2.6) note that (cixi + bi)
∑N

j=1 a
1
m
j = a

1
m
i

∑N
j=1 (cjxj + bj), which

clearly is (2.6). For (2.6) ⇒ (2.4), for all i = 1, . . . , N ,
a

1
m
i

(cixi+bi)
=

∑N
j=1 a

1
m
j∑N

j=1(cjxj+bj)
= C,

where C is a constant, so for all i, j, (2.4) holds.

A.2 Proof of Theorem 2.2.2

From (2.4),
a

1
m
i

ci

(
x∗j +

bj

cj

)
=

a
1
m
j

cj

(
x∗i + bi

ci

)
, so

a
1
m
i

ci

N∑
j=1

(
x∗j +

bj
cj

)
=

(
x∗i +

bi
ci

) N∑
j=1

a
1
m
j

cj
(A.1)

with
∑N

j=1 x
∗
j = P , we obtain (2.11). The constraint on P in (2.12) is obtained by

using x∗i ≥ 0. In the case when P > 0, without (2.12) necessarily holding, the analysis

changes. Since we need to satisfy the constraint that xi ≥ 0, and using the fact that

a
1
m
i

ci
> 0, for some i = 1, . . . , N , for xi > 0,

a
1
m
i

bi
> σ =

∑N
j=1

a
1
m
j

cj

P +
∑N

j=1
bj

cj

(A.2)
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Since
a

1
m
1

b1
> . . . >

a
1
m
N

bN
, if we let k∗ be the largest index k for which

a
1
m
k

bk
> σ, k∗

is given by (2.14). Then, if i ∈ {k∗ + 1, k∗ + 2, . . . , N}, (A.2) is not satisfied, and

since ci > 0, this equation can be written as

a
1
m
i
ci

P+
a

1
m
i
ci

∑N
j=1

bj
cj

− bi
ci

∑N
j=1

a
1
m
j
cj

∑N
j=1

a
1
m
j
cj

≤ 0. The

left-hand-side of this inequality is the same x∗i in (2.11). However, we have assumed

that x∗i ≥ 0, so x∗i = 0 for i ∈ {k∗ + 1, . . . , N}. Hence, we will have N − k∗ truncated

habitats, which implies that
∑N

j=1 x
∗
j =

∑k∗
j=1 x

∗
j = P . Therefore, instead of taking

the sum over all habitats in (A.1), we need to consider only those habitats that are

inhabited, i.e., we need to take the sum over k∗ habitats. Then,
a

1
m
i

ci

∑k∗
j=1

(
x∗j +

bj

cj

)
=(

x∗i + bi

ci

)∑k∗
j=1

a
1
m
j

cj
. Using the fact that

∑k∗
j=1 x

∗
j = P , and the same ideas as before,

we obtain that the IFD for the suitability function in (2.5) is given by (2.13) and

(2.14).

A.3 Proof of Theorem 2.3.1

Let x̄ represent a strategy choice by animal εx such that all other animals make

strategy choices such that the IFD defined by (2.6) holds. From the habitat matching

rule we know that for any j such that aj = 0, xj = 0. So x̄ will only correspond

to strategy (habitat) choices i ∈ H∗ where ai > 0 and xi > 0. Let Px̄ represent the

population with individuals all playing strategies such that the IFD is achieved. It

is impossible to know which habitat i ∈ H∗ player εx will choose since the IFD can

be achieved for any strategy choice i ∈ H∗ provided the other animals adopt the

appropriate strategies. In Theorem 2.2.1 we have shown that the habitat matching

rule is satisfied and it is given by (2.6), which in terms of fitness is equivalent to
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(2.16). Hence, for any i ∈ H∗

f(x̄, Px̄) = f(i) = εx
a

1
m
i

(cixi + bi)
= εx

a
1
m
j

(cjxj + bj)
= f(j) (A.3)

for all i, j ∈ H∗. Suppose that the animal εx makes a unilateral deviation to strategy

ȳ �= x̄ that corresponds to choosing habitat j �= i, j ∈ H (the animal could choose

j such that aj = 0). Then, f(ȳ, Px̄) = εx
a

1
m
j

(cj(xj+εx)+bj)
, and if j ∈ H − H∗, aj = 0,

f(ȳ, Px̄) = 0. In either case, by monotonicity and from (A.3), f(ȳ, Px̄) < f(x̄, Px̄).

Hence, the IFD is a strict Nash equilibrium and hence an ESS.

A.4 Proof of Theorem 2.3.2

Note that (2.20) is equivalent to the optimization problem

max z

subject to
∑N

j=1 xj = P

xi ≥ 0, i = 1, . . . , N

εx

a
1
m
i
ci

xi+
bi
ci

≥ z, i = 1, . . . , N

(A.4)

where we have introduced the new variable z ∈ R, z > 0. If we combine the con-

straints, we obtain that for each i = 1, . . . , N , εx

a
1
m
i
ci

z
≥ xi+

bi

ci
> 0, since z > 0. Adding

all the terms across the N habitats we obtain that z ≤ εx

∑N
j=1

a
1
m
j
cj

P+
∑N

j=1

bj
cj

. Therefore, (A.4)

is equivalent to
max z

subject to z ≤ εx

∑N
j=1

a
1
m
j
cj

P+
∑N

j=1

bj
cj
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In this case, the maximum is unique and equal to z∗ = εx

∑N
j=1

a
1
m
j
cj

P+
∑N

j=1

bj
cj

. Hence, for

i = 1, . . . , N , the x∗i are any values that satisfy the constraints of (A.4) and such that

x∗i ≤
a

1
m
i

ci
P +

a
1
m
i

ci

∑N
j=1

bj

cj
− bi

ci

∑N
j=1

a
1
m
j

cj∑N
j=1

a
1
m
j

cj

(A.5)

We have then two cases. For the “<” option, adding all the terms across the N

habitats, we obtain a contradiction (i.e., the total population size is less than P ).

Therefore, the “=” option in (A.5) must hold. Using the same ideas as in the proof

of Theorem 2.2.2, we can show that the IFD for the suitability function in (2.5) is

given by (2.13) and (2.14).

A.5 Proof of Theorem 2.4.1

For (=⇒), since by hypothesis the sum of the pi is equal to 1 for all t ≥ 0, and

pi(0) ≥ 0 for all i, then p(0) ∈ ∆. For the N = 2 case,

ṗ1 = β1εx

(
a

1
m
1 p1(1 − p1)

(c1Pp1 + b1)
− a

1
m
2 p1(1 − p1)

(c2Pp2 + b2)

)

ṗ2 = β2εx

(
a

1
m
2 (1 − p1)(1 − (1 − p1))

(c2Pp2 + b2)
− a

1
m
1 p1(1 − p1)

(c1Pp1 + b1)

)

Since
∑N

j=1 pj = 1,
∑N

j=1 ṗj = 0, hence, β1 = β2. Next, we assume that β = βi = βj

for all i, j = 1, . . . , N , and prove that it also holds for N + 1. Note that

0 =
∑N

i=1 βipi
a

1
m
i

(ciPpi+bi)
−∑N

i=1 βipi

∑N+1
j=1

pja
1
m
j

(cjPpj+bj)

+βN+1
a

1
m
N+1pN+1

(cN+1PpN+1+bN+1)
− βN+1pN+1

∑N+1
j=1

pja
1
m
j

(cjPpj+bj)

Using
∑N+1

i=1 pi = 1, and βi = β for all i = 1, . . . , N , by hypothesis, we obtain that β =

βN+1. For (⇐=), since βi = βj, then
∑N

i=1 ṗi = εx

(∑N
i=1 βipif(i) −∑N

i=1 βipif̄
)

= 0.
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But, if we take the integral with respect to time, for t ≥ 0,
∫ t

0

∑N
i=1 ṗi(τ)dτ = 0, or∑N

i=1 pi(t)−
∑N

i=1 pi(0) = 0. But, by hypothesis, the sum of all the initial conditions

has to be equal to 1, then we get that for all t ≥ 0
∑N

i=1 pi(t) = 1. Since by hypothesis

p(0) ∈ ∆, we can conclude that p ∈ ∆ for all t ≥ 0.

A.6 Proof of Theorem 2.4.3

Using the Lyapunov function

V = −
N∑

i=1

p∗i ln

(
pi

p∗i

)
(A.6)

In information theory, this function is called the relative entropy function or Kullback-

Leibler distance [15]. It has the property that 0 ln
(

0
pi

)
= 0 ln

(
0
0

)
= 0, and p∗i ln

(
p∗i
0

)
=

+∞. It has been proven that V is a valid Lyapunov function candidate (e.g., see [15]).

The derivative of V along the trajectories in (2.23), is V̇ = −∑N
i=1 p

∗
i

1
pi

(
pi(f(i) − f̄)

)
.

Since
∑N

j=1 p
∗
j = 1

V̇ = −
N∑

i=1

p∗i f(i) + f̄
N∑

i=1

p∗i = −
N∑

i=1

p∗i f(i) +
N∑

i=1

pif(i) =
N∑

i=1

f(i) (pi − p∗i ) (A.7)

In order to show that V̇ is non-positive, we will prove that the maximum value of V̇ in

(A.7) is equal to 0. For that, we let f(i) be as in (2.16) and we solve the optimization

problem

max J = V̇ =
∑N

i=1 εx


 a

1
m
i
ci

Ppi+
bi
ci

(pi − p∗i )




subject to
∑N

j=1 pj = 1

pi > 0 for all i = 1, . . . , N

Using Lagrange multiplier theory, the Jacobian ∇J =
[

∂J
∂p1
, ∂J

∂p2
, . . . , ∂J

∂pN

]�
, where

∂J
∂pi

= εx

a
1
m
i
ci

(
Pp∗i +

bi
ci

)
(Ppi+

bi
ci

)2
. Since the inequality constraint pi > 0 is inactive, for i =
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1, . . . , N ,

εx


 a

1
m
i
ci




2(
P+

∑N
j=1

bj
cj

)

(
P p̄∗i +

bi
ci

)2∑N
j=1

a
1
m
j
cj

+ λ∗ = 0 (A.8)

where p̄∗ = [p̄∗1, . . . , p̄
∗
N ]� is the regular point for the optimization problem, and λ∗ is

the Lagrange multiplier. From (A.8), for any i, j = 1, . . . , N ,
a

1
m
i

ci

∑N
j=1

(
P p̄∗j +

bj

cj

)
=(

P p̄∗i + bi

ci

)∑N
j=1

a
1
m
j

cj
. After solving the above equation for p̄∗i , we obtain a scaled

version of (2.11), i.e., p̄∗i =
x∗

i

P
= p∗i . In order to see if it is a global or a local maximum,

we need to check the Hessian ∇2J . We have that ∂2J
∂p2

i
= −εx

2P


 a

1
m
i
ci




2(
P+

∑N
j=1

bj
cj

)

(
Ppi+

bi
ci

)3∑N
j=1

a
1
m
j
cj

< 0,

and ∂2J
∂pi∂pj

= 0. Hence, ∇2J is negative definite, which implies that p̄∗ is indeed a

global maximum. Therefore, the maximum value of J is max J = 0. Since V̇ < 0 for

all pi �= p∗i , and V̇ = 0 if pi = p∗i the IFD is (uniformly) asymptotically stable.

Notice that V̇ in (A.7) is negative, except when it is equal to the equilibrium point.

The previous analysis showed that whenever we are inside the simplex (i.e., when

p ∈ ∆ − ∂∆) the Lyapunov function satisfied all the previous conditions. Therefore,

the region of asymptotic stability is ∆ − ∂∆.

A.7 Proof of Theorem 2.4.4

We want to minimize J , subject to h(x) =
∑N

i=1 xi − P , and gi(x) = xi, i = 1, . . . , N

where the gi constraints are inactive. We have ∂J
∂xi

= 1
P

(
xi

P
− x∗

i

P

)
, and ∇h(x) =

[1, . . . , 1]�. Also, ∇2J(x) = 1
P 2 IN×N , where IN×N is the identity matrix N × N .

Since P > 0, and satisfies with strict inequality (2.12), ∇2J(x) is positive definite.

Using the fact that the constraint is inactive, we have for all i = 1, . . . , N that

1
P

(
x̄∗

i

P
− x∗

i

P

)
+ λ∗ = 0, where λ∗ is the Lagrange multiplier, and x̄∗i is the optimum
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point. Rearranging, we have for any k, w, x̄∗k − x̄∗w = x∗k − x∗w. In terms of k only,

we will have N − 1 of these equations. If we add all these equations, we get that

x̄∗k(N − 1) −∑N
j=1,j �=k x̄

∗
j = x∗k(N − 1) −∑N

j=1,j �=k x
∗
j , which is equal to (2.11). It is

clear that x̄∗i > 0 since P is assumed to satisfy (2.12) with strict inequality. However,

J is defined over ∆x − ∂∆x, and its Hessian is positive definite, which implies that

the cost function is convex on ∆x − ∂∆x. Therefore, the point in (2.11) is a global

minimum for the cost function J defined in (2.27), subject to
∑N

j=1 xj = P , with

xi > 0 for all i = 1, . . . , N .

A.8 Proof of Theorem 2.4.5

Since (2.29) is equivalent to (2.24) for the case when bi = 0 for all i = 1, . . . , N . We

know that the IFD defined by (2.11) is an equilibrium point whenever P > 0 and it is

unique, and that ∆x−∂∆x is invariant in x generated by (2.29). Let ei = pi−
a

1
m
i
ci

∑N
j=1

a
1
m
j
cj

.

Since ai, ci, and m are positive, we have that ėi = ṗi = −
(

βεx

P

∑N
j=1

a
1
m
j

cj

)
ei. Taking

the Lyapunov function Vi = 1
2
e2

i , then V̇i = −
(

βεx

P

∑N
j=1

a
1
m
j

cj

)
e2

i (t), which implies

that the IFD equilibrium is (uniformly) exponentially stable.

A.9 Proof of Theorem 4.3.1

We will show that if x̄i∗ = [xi∗
1 , x

i∗
2 , . . . , x

i∗
N ]

�
, where xi∗

j =
Bf aj∑N
j=1 aj

for all j =

1, 2, . . . , N , and i = 1, 2, . . . , n, then a single hive mutant ȳi �= x̄i∗ will have a lower

fitness for the moment, when ȳi ∈ ∆x − ∂∆x (i.e., strictly inside the simplex). This

is equivalent to show that Equation (4.7) is satisfied for all i = 1, 2, . . . , n. But, it
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can also be seen as a constrained optimization problem of the form

maximize f i =
∑N

j=1 x
i
j

aj∑n
k=1 xk

j

subject to
∑N

j=1 x
i
j = Bf i = 1, 2, . . . , n

xi
j > 0 j = 1, 2, . . . , N

xk
j =

Bf aj∑N
m=1 am

k �= i, k = 1, 2, . . . , n

(A.9)

This is a nonlinear optimization problem that we will solve using Lagrange multiplier

theory (e.g., [77]).

First, since xi
j > 0 the constraint is inactive, so it can be ignored. Second, replace

in Equation (4.10) the constraint xk
j =

Bf aj∑N
m=1 am

, for all k �= i to get

f i =
N∑

j=1

xi
j

aj

xi
j + φj

where

φj =
n∑

k=1,k �=i

Bfaj∑N
m=1 am

= (n− 1)
Bfaj∑N
m=1 am

(A.10)

The problem in Equation (A.9) becomes

maximize f i

subject to
∑N

j=1 x
i
j = Bf , i = 1, 2, . . . , n

Now, we define the vector x = [xi
1, x

i
2, . . . , x

i
N ]

�
which constitutes the points for which

we want to find an extremizer point. Let h(x) =
∑N

j=1 x
i
j − Bf . The gradient of f i

with respect to x is equal to

∇f i(x) =

[
∂f i

∂xi
1

,
∂f i

∂xi
2

, . . . ,
∂f i

∂xi
N

]�

∇f i(x) =

[
a1φ1

(xi
1 + φ1)2

,
a2φ2

(xi
2 + φ2)2

, . . . ,
aNφN

(xi
N + φN)2

]�

Also, ∂h
∂xi

j
= 1 for all j = 1, 2, . . . , N . Let λ∗ be the Lagrange multiplier for this con-

strained optimization problem. Then, we have to solve the following set of equations
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for xi∗
j > 0

a1φ1

(xi∗
1 +φ1)2

+ λ∗ = 0
...

aNφN

(xi∗
N+φN )2

+ λ∗ = 0

xi∗
1 + xi∗

2 + . . . xi∗
N = Bf

For any ī, j̄ = 1, 2, . . . , N we have from the previous equations that

aīφī

(xi∗̄
i

+ φī)2
=

aj̄φj̄

(xi∗̄
j

+ φj̄)2

Using Equation (A.10),

a2
ī(

xi∗̄
i

∑N
m=1 am +Bfaī(n− 1)

)2 =
a2

j̄(
xi∗̄

j

∑N
m=1 am +Bfaj̄(n− 1)

)2

Since aj > 0 and xi
j > 0, j = 1, 2, . . . , N , i = 1, 2, . . . , n, and n > 1,

aī

(
xi∗̄

j

N∑
m=1

am +Bfaj̄(n− 1)

)
= aj̄

(
xi∗̄

i

N∑
m=1

am +Bfaī(n− 1)

)

Simplifying, we get that for all ī, j̄ = 1, 2, . . . , N ,

aīx
i∗̄
j = aj̄x

i∗̄
i

After some algebraic manipulations, this implies that for all ī = 1, 2, . . . , N ,

xi∗̄
i =

Bfaī∑N
m=1 am

(A.11)

In order to see that xi∗̄
i defined in Equation (A.11) is a local maximum we need to

prove the second order sufficiency condition. For that, we need to analyze the Hessian

of f j (because the Hessian of h(x) is 0). In this case,

∇2f j(x) =




−2a1φ1

(xi
1+φ1)

3 0 . . . 0

0 −2a2φ2

(xi
2+φ2)

3 . . . 0

...
...

. . .
...

0 0 . . . −2aNφN

(xi
N+φN)

3



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It is clear that the Hessian of f i(x) for xi∗
j , j = 1, 2, . . . , N , i = 1, 2, . . . , n, in

Equation (A.11) is negative definite since aj > 0, xj > 0, n > 1 and φj > 0,

j = 1, 2, . . . , N . Therefore we can conclude that the extremizer points defined in

Equation (A.11) are global maximizers (because it is clear that the cost function

is convex on the simplex ∆x). Hence, xi∗
j defined by Equation (A.11) (which is

equivalent to Equation (4.13)) is a strict Nash equilibrium. Also, since it is a strict

Nash equilibrium, Equation (4.8) holds. Therefore, the IFD is a one-stable ESS for

the finite population in a game against the field.

A.10 Proof of Theorem 4.3.2

As in the case for the proof of Theorem 4.3.1, xj > 0 is an inactive constraint so

it can be ignored. Let h(x) =
∑N

j=1 xj − Bf . For this case, we will have that the

gradient of h(x) is equal to

∇h(x) = [1, 1, . . . , 1]�

and the gradient for J(x) is given by

∇J(x) =

[
2x1

Bfa1

,
2x2

Bfa2

, . . . ,
2xN

BfaN

]�

Let λ∗ be the Lagrange multiplier for this constrained optimization problem. Then,

we have to solve the following set of equations for x∗j > 0

2x∗
1

Bf a1
+ λ∗ = 0
...

2x∗
N

Bf aN
+ λ∗ = 0

x∗1 + x∗2 + . . .+ x∗N = Bf

As in the proof of Theorem 4.3.1 this implies that

akx
∗
j = ajx

∗
k
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for all j, k = 1, 2, . . . , N , which implies that

x∗j =
Bfaj∑N
j=1 aj

(A.12)

In order to see that x∗j defined in Equation (A.12) is a local minimum we need to

prove the second order sufficiency condition. For that, we need to analyze the Hessian

of J (because the Hessian of h(x) is 0). In this case,

∇2J(x∗) =




2
Bf a1

0 . . . 0

0 2
Bf a2

. . . 0
...

...
. . .

...
0 0 . . . 2

Bf aN




Since, Bf > 0 and aj > 0, j = 1, 2, . . . , N , ∇2J(x∗) is positive definite, which

implies by the second-order sufficient condition that x∗j in Equation (A.12) is a local

minimizer. However, we know that the cost function J is defined over a simplex ∆x,

which is nonempty, convex, and a closed subset of R
N . Using this fact, and since

the Hessian of J(x∗) is positive definite, we can conclude that the local minimum in

Equation (A.12) is also global [77].

A.11 Proof of Theorem 4.3.3

From an optimization point of view, the problem that we want to solve is the

same as
maximize f i

subject to
∑N

j=1 x
j
i = Bf i = 1, 2, . . . , n

xi
j > 0 j = 1, 2, . . . , N

xī
j =

nBf aj∑N
j=1 aj

−∑n
k=1,k �=ī x

k
j ī �= i

(A.13)

Let h(x) =
∑N

j=1 x
i
j − Bf , and since xi

j > 0 that constraint is inactive, so it can

be ignored. Using Lagrange multipliers, we need to find first the gradient of the cost
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function and the gradient of the constraint. In this case, we have

∇f i =

[
∂f i

∂xi
1

,
∂f i

∂xi
2

, . . . ,
∂f i

∂xi
N

]�

where

∂f i

∂xi
j

=
aj

∑n
k=1,k �=i x

k
j(

xi
j +

∑n
k=1,k �=i x

k
j

)2

The gradient of h(x) is ∇h(x) = [1, 1, . . . , 1]�. Therefore, we have to solve the

following set of equations for xi∗
j > 0

a1
∑n

k=1,k �=i xk∗
1

(xi∗
1 +

∑n
k=1,k �=i xk∗

1 )2
+ λ∗ = 0

...
aN

∑n
k=1,k �=i xk∗

N

(xi∗
N+

∑n
k=1,k �=i xk∗

N )2
+ λ∗ = 0

xi∗
1 + xi∗

2 + . . . xi∗
N = Bf

Then, for any ī, j̄ = 1, 2, . . . , N ,

aī

∑n
k=1,k �=i x

k∗
ī(

xi∗̄
i

+
∑n

k=1,k �=i x
k∗
ī

)2 =
aj̄

∑n
k=1,k �=i x

k∗
j̄(

xi∗̄
j

+
∑n

k=1,k �=i x
k∗
j̄

)2

Replacing the constraint in Equation (A.13),

aī

(
nPaī∑N
j=1 aj

− xi∗̄
i

)
n2B2

fa
2
j̄(∑N

j=1 aj

)2 = aj̄

(
nPaj̄∑N

j=1 aj

− xi∗̄
j

)
n2B2

fa
2
ī(∑N

j=1 aj

)2

which implies that

aj̄x
i∗̄
i = aīx

i∗̄
j

xi∗̄
i =

aīBf∑N
j=1 aj

(A.14)

The point in Equation (A.14) is an extremizer for the optimization problem defined in

(A.13). Now, let us prove that (A.14) is indeed a global maximizer for this problem.

110



For that, we need to analyze only the Hessian of our cost function because ∇2h(x) = 0.

That is,

∇2f i(x∗) =




−2a1
∑n

k=1,k �=i xk∗
1

(xi
1+

∑n
k=1,k �=i xk∗

1 )
3 0

...
. . .

...

0
−2aN

∑n
k=1,k �=i xk∗

N

(xi
N+

∑n
k=1,k �=i xk∗

N )
3




Clearly, since aj > 0, Bf > 0, xi∗
j > 0,

∑n
k=1,k �=i x

k∗
1 > 0, and n > 1, the Hessian is

negative definite. Therefore we can conclude that the extremizer points defined in

Equation (A.14) are global maximizers (because it is clear that the cost function is

convex on the simplex ∆x).

Replacing the optimum point, we can notice that the constraint becomes xī
j =

nBf aj∑N
j=1 aj

−∑n
k=1,k �=ī x

k
j that is equivalent to Equation (4.19).
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special section on ant colony optimization,” IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 317–319, Aug 2002.

[53] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony
of cooperating agents,” IEEE Transactions on Systems, Man and Cybernetics,
Part B, vol. 26, pp. 29–41, Feb 1996.

[54] R. Schoonderwoerd, O. E. Holland, J. L. Bruten, and L. J. M. Rothkrantz,
“Ant-based load balancing in telecommunications networks,” Adaptive Behavior,
vol. 5, no. 2, pp. 169–207, 1996.

[55] M. Reimann, K. Doerner, and R. Hartl, “D-Ants: Savings based ants divide
and conquer the vehicle routing problem,” Computers & Operations Research,
vol. 31, pp. 563–591, April 2004.

[56] T. D. Seeley, The Wisdom of the Hive. Cambridge, MA: Harvard University
Press, 1995.

[57] T. Seeley, S. Camazine, and J. Sneyd, “Collective decision-making in honey bees:
how colonies choose among nectar sources,” Behavioral Ecology and Sociobiology,
vol. 28, pp. 277–290, 1991.

[58] M. Cox and M. Myerscough, “A flexible model of foraging by a honey bee colony:
the effects of individual behavior on foraging success,” Journal of Theoretical
Biology, vol. 223, pp. 179–197, 2003.

116



[59] D. Sumpter and S. Pratt, “A modelling framework for understanding social insect
foraging,” Behavioral Ecology and Sociobiology, vol. 53, pp. 131–144, 2003.

[60] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press,
1996.

[61] H. de Vries and J. C. Biesmeijer, “Modeling collective foraging by means of
individual behavior rules in honey-bees,” Behavioral Ecology and Sociobiology,
vol. 44, pp. 109–124, 1998.

[62] H. de Vries and J. C. Biesmeijer, “Self-organization in collective honeybee for-
aging: emergence of symmetry breaking, cross inhibition, and equal harvest-rate
distribution,” Behavioral Ecology and Sociobiology, vol. 51, pp. 557–569, 2002.

[63] T. D. Seeley and C. Tovey, “Why search time to find a food-storer bee accurately
indicates the relative rates of nectar collecting and nectar processing in honey
bee colonies,” Animal Behaviour, vol. 47, pp. 311–316, 1994.

[64] J. Bartholdi, T. D. Seeley, C. Tovey, and J. VandeVate, “The pattern and ef-
fectiveness of forager allocation among flower patches by honey bee colonies,”
Journal of Theoretical Biology, vol. 160, pp. 23–40, 1993.

[65] R. Dukas and L. Edelstein-Keshet, “The spatial distribution of colonial food
provisioners,” Journal of Theoretical Biology, vol. 190, pp. 121–134, 1998.

[66] K. M. Passino and T. D. Seeley, “Modeling and analysis of nest-site selection by
honey bee swarms: The speed and accuracy trade-off,” Behavioral Ecology and
Sociobiology, vol. 59, no. 3, pp. 427–442, 2006.

[67] M. E. Schaffer, “Evolutionary stable strategies for a finite population and a
variable contest size,” Journal of Theoretical Biology, vol. 132, pp. 469–478,
1988.

[68] J. Maynard Smith, “Can a mixed strategy be stable in a finite population?,”
Journal of Theoretical Biology, vol. 130, pp. 247–251, 1988.

[69] S. Nakrani and C. Tovey, “On honey bees and dynamic allocation in an internet
server colony,” in Proceedings of 2nd International Workshop on The Mathemat-
ics and Algorithms of Social Insects, 2003.

[70] T. Seeley and W. Towne, “Tactics of dance choice in honeybees: do foragers
compare dances?,” Behavioral Ecology and Sociobiology, vol. 30, pp. 59–69, 1992.

[71] T. D. Seeley, “Honey bee foragers as sensory units of their colonies,” Behavioral
Ecology and Sociobiology, vol. 34, pp. 51–62, 1994.

117



[72] T. D. Seeley, “Division of labor between scouts and recruits in honeybee forag-
ing,” Behavioral Ecology and Sociobiology, vol. 12, pp. 253–259, 1983.

[73] T. Seeley and P. Visscher, “Assessing the benefits of cooperation in honey bee
foraging: search costs, forage quality, and competitive ability,” Behavioral Ecol-
ogy and Sociobiology, vol. 22, pp. 229–237, 1988.

[74] J. G. Riley, “Evolutionary equilibrium strategies,” Journal of Theoretical Biol-
ogy, vol. 76, pp. 109–123, 1979.

[75] D. B. Neill, “Evolutionary stability for large populations,” Journal of Theoretical
Biology, vol. 227, pp. 397–401, 2004.

[76] V. P. Crawford, “Nash equilibrium and evolutionary stability in large- and finite-
population “Playing the Field Models”,” Journal of Theoretical Biology, vol. 145,
pp. 83–94, 1990.

[77] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific Press,
1995.

118


