Clase 7

12/02/2013

Lecturas 20.1 - 20.4

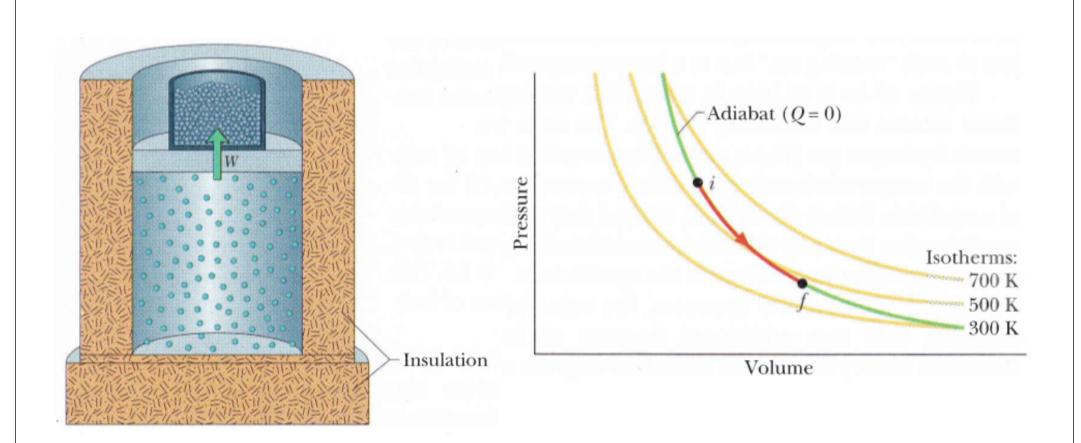
HEMOS VISTO ...

Proceso adiabático

Q=0 Proceso muy rápido Proceso muy bien aislado

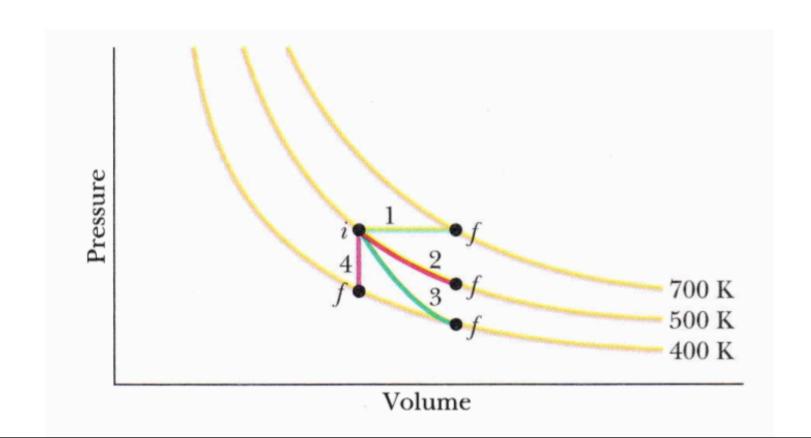
$$pV^{\gamma} = \text{constante}$$

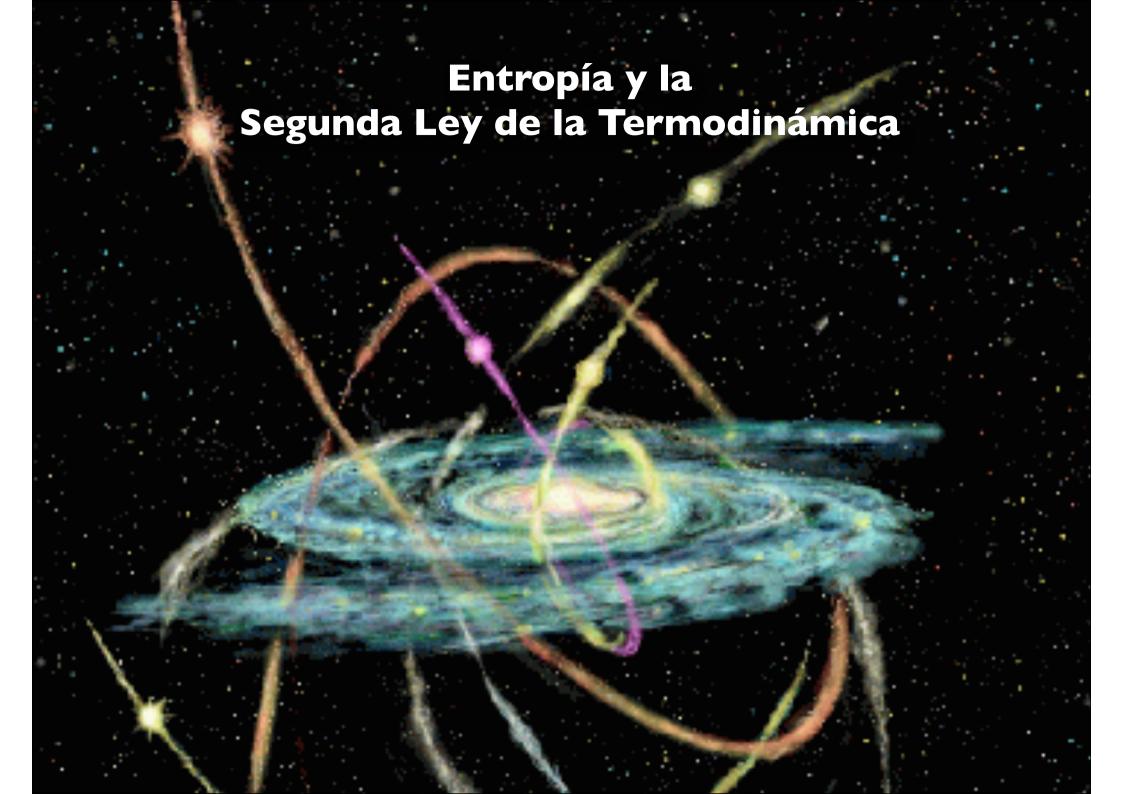
 $\gamma = C_p/C_V,$



Resúmen

Path in Fig. 19-16	Constant Quantity	Process Type	Some Special Results $(\Delta E_{\rm int} = Q - W \text{ and } \Delta E_{\rm int} = nC_V \Delta T \text{ for all paths})$
2	T	Isothermal	$Q = W = nRT \ln(V_f/V_i); \Delta E_{int} = 0$
3	pV^{γ} , $TV^{\gamma-1}$	Adiabatic	$Q = 0; W = -\Delta E_{\text{int}}$
4	V	Isochoric	$Q = \Delta E_{int} = nC_V \Delta T; W = 0$





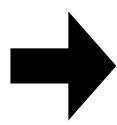
Procesos irreversibles y entropía

Los cambios de energía dentro de un sistema cerrado no fijan la dirección de procesos irreversibles.

Postulado de entropía

Si un proceso irreversible occurre en un sistema cerrado, la entropía S del sistema siempre aumenta, nunca disminuye.

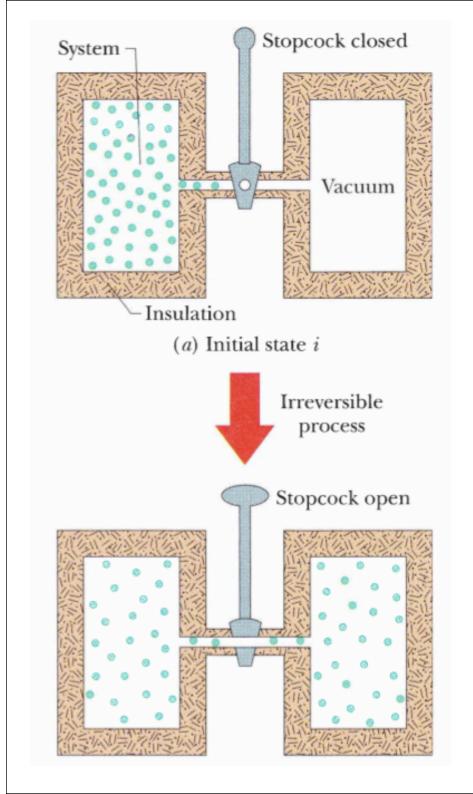
Flecha del tiempo



La entropía no obedece una ley de conservación

Se puede definir el cambio de entropía de dos formas diferentes:

- I. en términos de la temperatura del sistema y la energía que gana o pierde como calor.
- 2. contar las formas en que se pueden acomodar los átomos o las moléculas que constituyen el sistema.

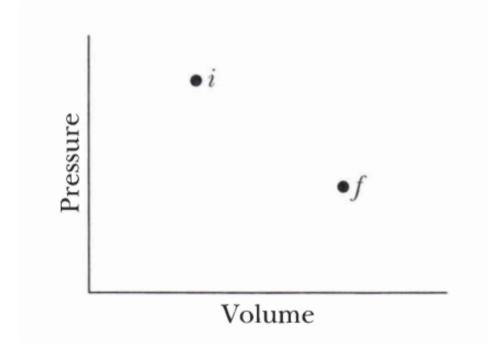


Cambios de entropía

Expansión libre de un gas ideal

Las moléculas nunca regresaran por si solas al estado inicial

P,V: variables de estado



Definimos el cambio de entropía entre dos estados inicial y final como:

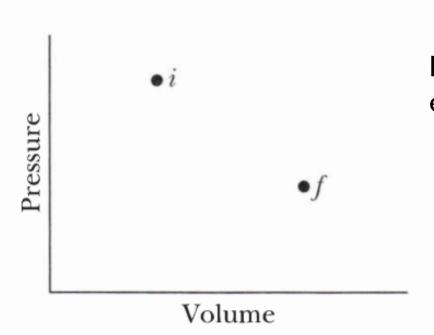
$$\Delta S = S_f - S_i = \int_i^f \frac{dQ}{T}$$

Q: energía transferida como calor, hacia o desde el sistema

T: temperatura en K

El signo del cambio de entropía es siempre el de Q

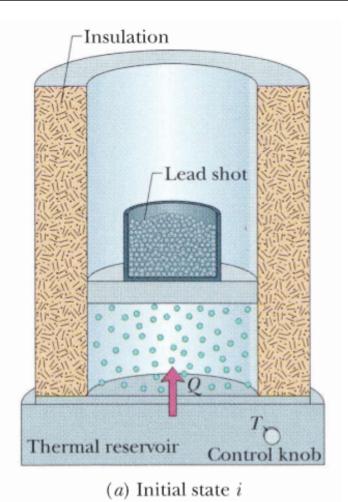
Unidades J / K



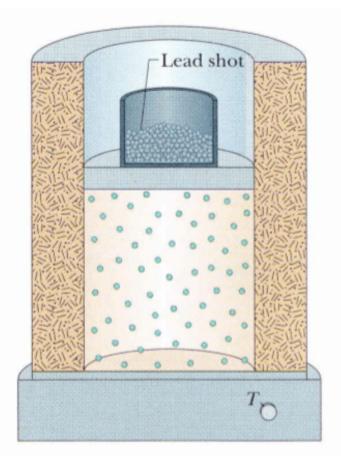
No sabemos pintar la gráfica de P-V para una expansión libre ni una relación entre Q y T

Pero como la entropía es función de estado podemos sustituir la expansión libre por un proceso reversible que conecta los estados i y f y seguir una trayectoria de P y V para hallar una relación entre Q y T

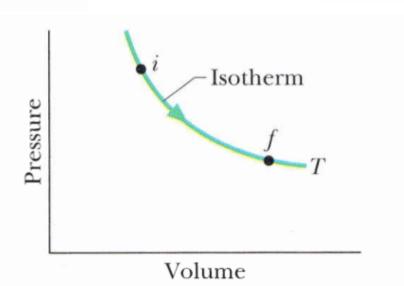
Puntos i y f están sobnre la misma isoterma !!!

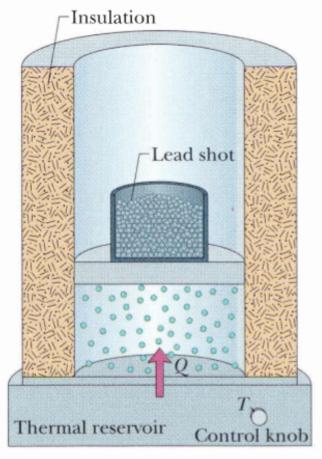


Proceso reversible

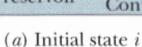


(b) Final state f



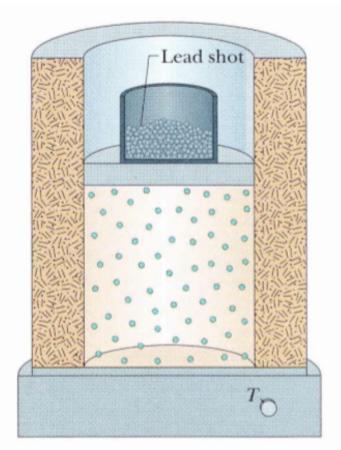


Proceso reversible



$$\Delta S = S_f - S_i = \frac{1}{T} \int_i^f dQ.$$

$$\Delta S = S_f - S_i = \frac{Q}{T}$$



(b) Final state f

$$\int dQ = Q$$

$$\Delta S = S_f - S_i \approx \frac{Q}{T_{\text{avg}}},$$

Para hallar el cambio de entropía para un proceso irreversible que ocurre en un sistema cerrado, sustituyase ese proceso por cualquier proceso reversible que conecte los estados inicial y final. Calcule el cambio de entropía para este procesos reversible con la ecuación

$$\Delta S = S_f - S_i = \int_i^f \frac{dQ}{T}$$

La entropía como función de estado

$$dE_{\rm int} = dQ - dW$$
.

$$dQ = p \, dV + nC_V \, dT.$$

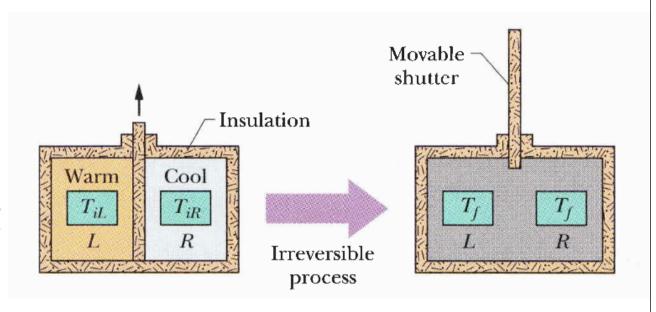
$$\frac{dQ}{T} = nR\frac{dV}{V} + nC_V\frac{dT}{T}.$$

$$\int_{i}^{f} \frac{dQ}{T} = \int_{i}^{f} nR \frac{dV}{V} + \int_{i}^{f} nC_{V} \frac{dT}{T}.$$

$$\Delta S = S_f - S_i = nR \ln \frac{V_f}{V_i} + nC_V \ln \frac{T_f}{T_i}.$$

Ejercicio

Bloques idénticos de cobre de masa m=1.5 kg



Bloque L a temperatura $T_{iL} = 60^{\circ} \text{C}$

Bloque R a temperatura $T_{iR} = 20^{\circ}$ C.

Los compartimientos estan aislados. Se levanta la división y al final terminan en equilibrio térmico a $T_f = 40^{\circ} {
m C}$

Cuál es el cambio de neto entropía del sistema de los dos bloques durante el proceso irreversible ? C=386 J / kg.K

Para calcular el cambio de entropía necesitamos hallar un proceso reversible que lleva al sistema desde el estado inicial al final.

Necesitamos un depósito térmico cuya temperatura pueda cambiarse lentamente y llevamos los bloques a través de los siguientes pasos.

Con T fija a 60°C ponemos el bloque L en el depósito. La Paso temperatura baja lentamente a 40 °C. Se va transfiriendo energía en forma de calor desde el bloque al depósito dQ = mc dT,

Insulation
$$\Delta S_L = \int_i^f \frac{dQ}{T} = \int_{T_{iL}}^{T_f} \frac{mc\ dT}{T} = mc \int_{T_{iL}}^{T_f} \frac{dT}{T}$$

$$= mc \ln \frac{T_f}{T_{iL}}.$$
(a) Step 1 (b) Step 2

$$T_{iL}$$
 (= 60°C = 333 K) T_f (= 40°C = 313 K)

$$\Delta S_L = (1.5 \text{ kg})(386 \text{ J/kg} \cdot \text{K}) \ln \frac{313 \text{ K}}{333 \text{ K}}$$

= -35.86 J/K.

Paso 2

Con T fija a 20°C ponemos el bloque R sobre el depósito. Entonces la emperatura se eleva del depósito y el bloque lentamente a 40 °C. Con el mismo razonamiento empleado se puede hallar el cambio de entropía para R.

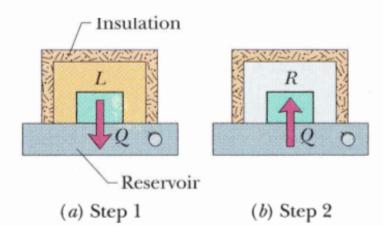
$$\Delta S_R = (1.5 \text{ kg})(386 \text{ J/kg} \cdot \text{K}) \ln \frac{313 \text{ K}}{293 \text{ K}}$$

= +38.23 J/K.

$$\Delta S_{\text{rev}} = \Delta S_L + \Delta S_R$$

= -35.86 J/K + 38.23 J/K = 2.4 J/K.

$$\Delta S_{\text{irrev}} = \Delta S_{\text{rev}} = 2.4 \text{ J/K}.$$



Segunda Ley de la Termodinámica

$$\Delta S_{\rm gas} = -\frac{|Q|}{T}$$

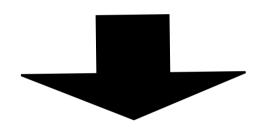
$$\Delta S_{\rm gas} = +\frac{|Q|}{T}.$$

Si un proceso ocurre en un sistema cerrado, la entropía del sistema aumenta para procesos irreversibles y permanece constante para procesos reversibles. Nunca decrece !!!

Fuerza debida a la entropía

$$dE = dQ - dW$$

$$dW = -F dx$$



$$dE = T dS + F dx$$
.

dE ~ 0 si el estiramiento es pequeño

$$F = -T \frac{dS}{dx}.$$

$$dS = dQ/T,$$
Coiled

(a)

Uncoiled

 \vec{F}
(b)

 $\Delta S = Q/T$

Ejercicio

La fuerza de una banda elástica de caucho está dada por la Ley de Hooke F=-kx. Suponga que una bandaelástica tiene K=50 N/m y que a una temperatura T de 27°C se estira x=1.2 cm. Para un pequeño estiramiento extra calcular con que rapidez decrece dS/dx en el tiempo.

$$F = -T \, dS/dx \qquad \qquad T \left| \frac{dS}{dx} \right| = k|x|,$$

$$\left| \frac{dS}{dx} \right| = \frac{k|x|}{T} = \frac{(50.0 \text{ N/m})(0.012 \text{ m})}{(273 \text{ K} + 27 \text{ K})}$$
$$= 2.0 \times 10^{-3} \text{ J/K} \cdot \text{m}.$$